Mostra el registre d'ítem simple

dc.contributor.authorLloberas Valls, Oriol
dc.contributor.authorHuespe, Alfredo Edmundo
dc.contributor.authorOliver Olivella, Xavier
dc.contributor.authorDias, I.F.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-06-21T14:55:41Z
dc.date.available2016-06-21T14:55:41Z
dc.date.issued2016-08
dc.identifier.citationLloberas, O., Huespe, A., Oliver, J., Dias, I. Strain injection techniques in dynamic fracture modeling. "Computer methods in applied mechanics and engineering", Agost 2016, vol. 308, p. 499-534.
dc.identifier.issn0045-7825
dc.identifier.urihttp://hdl.handle.net/2117/88236
dc.description.abstractA computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.
dc.format.extent36 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials::Assaig de materials::Assaig de fractura
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFracture mechanics--Mathematical models
dc.subject.otherFracture dynamics
dc.subject.otherStrong discontinuity approach
dc.subject.otherCrack path field
dc.subject.otherStrain injection techniques
dc.subject.otherCOMP-DES-MAT Project
dc.subject.otherCOMPDESMAT Project
dc.titleStrain injection techniques in dynamic fracture modeling
dc.typeArticle
dc.subject.lemacMecànica de fractura -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1016/j.cma.2016.05.023
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0045782516304248
dc.rights.accessOpen Access
local.identifier.drac18570884
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/320815/EU/Advanced tools for computational design of engineering materials/COMP-DES-MAT
local.citation.authorLloberas, O.; Huespe, A.; Oliver, J.; Dias, I.
local.citation.publicationNameComputer methods in applied mechanics and engineering
local.citation.volume308
local.citation.startingPage499
local.citation.endingPage534


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple