Mostra el registre d'ítem simple

dc.contributor.authorCórdova, Luis
dc.contributor.authorRojas, Otilio
dc.contributor.authorOtero Calviño, Beatriz
dc.contributor.authorCastillo, Jose
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2016-04-18T18:23:37Z
dc.date.available2016-04-18T18:23:37Z
dc.date.issued2016-03-15
dc.identifier.citationCórdova, L., Rojas, O., Otero, B., Castillo, J. Compact finite difference modeling of 2-D acoustic wave propagation. "Journal of computational and applied mathematics", 15 Març 2016, vol. 295, p. 83-91.
dc.identifier.issn0377-0427
dc.identifier.urihttp://hdl.handle.net/2117/85841
dc.description.abstractWe present two fourth-order compact finite difference (CFD) discretizations of the velocity–pressure formulation of the acoustic wave equation in 2-D rectangular grids. The first method uses standard implicit CFD on nodal meshes and requires solving tridiagonal linear systems along each grid line, while the second scheme employs a novel set of mimetic CFD operators for explicit differentiation on staggered grids. Both schemes share a Crank–Nicolson time integration decoupled by the Peaceman–Rachford splitting technique to update discrete fields by alternating the coordinate direction of CFD differentiation (ADI-like iterations). For comparison purposes, we also implement a spatially fourth-order FD scheme using non compact staggered mimetic operators in combination to second-order leap-frog time discretization. We apply these three schemes to model acoustic motion under homogeneous boundary conditions and compare their experimental convergence and execution times, as grid is successively refined. Both CFD schemes show four-order convergence, with a slight superiority of the mimetic version, that leads to more accurate results on fine grids. Conversely, the mimetic leap-frog method only achieves quadratic convergence and shows similar accuracy to CFD results exclusively on coarse grids. We finally observe that computation times of nodal CFD simulations are between four and five times higher than those spent by the mimetic CFD scheme with similar grid size. This significant performance difference is attributed to solving those embedded linear systems inherent to implicit CFD.
dc.format.extent9 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
dc.subject.lcshMathematics -- Data processing
dc.subject.lcshNumerical analysis
dc.subject.otherSchemes
dc.subject.otherMimetic finite differences
dc.subject.otherAcoustic media
dc.subject.otherADI methods
dc.titleCompact finite difference modeling of 2-D acoustic wave propagation
dc.typeArticle
dc.subject.lemacAnàlisi numèrica
dc.subject.lemacMatemàtica -- Informàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
dc.identifier.doi10.1016/j.cam.2015.09.037
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0377042715000618
dc.rights.accessOpen Access
local.identifier.drac17691328
dc.description.versionPreprint
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/644202/EU/Geophysical Exploration using Advanced GAlerkin Methods/GEAGAM
local.citation.authorCórdova, L.; Rojas, O.; Otero, B.; Castillo, J.
local.citation.publicationNameJournal of computational and applied mathematics
local.citation.volume295
local.citation.startingPage83
local.citation.endingPage91


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple