Mostra el registre d'ítem simple

dc.contributor.authorBogónez Franco, Francisco
dc.contributor.authorBayés-Genís, Antoni
dc.contributor.authorRosell Ferrer, Francisco Javier
dc.contributor.authorBragós Bardia, Ramon
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2010-08-03T09:22:10Z
dc.date.available2010-08-03T09:22:10Z
dc.date.created2010-04-04
dc.date.issued2010-04-04
dc.identifier.citationBogonez, F. [et al.]. Performance of an implantable impedance spectroscopy monitor using ZigBee. A: International Conference on Electrical Bioimpedance. "XIVth International Conference on Electrical Bioimpedance and the 11th Conference on Biomedical Applications of EIT". Florida: 2010, p. 1-4.
dc.identifier.urihttp://hdl.handle.net/2117/8562
dc.description.abstractThis paper presents the characterization measurements of an implantable bioimpedance monitor with ZigBee. Such measurements are done over RC networks,performing short and long-term measurements, with and without mismatch in electrodes and varying the temperature and the RF range. The bioimpedance monitor will be used in organ monitoring through electrical impedance spectroscopy in the 100 Hz - 200 kHz range. The specific application is the study of the viability and evolution of engineered tissue in cardiac regeneration in an experimental protocol with pig models. The bioimpedance monitor includes a ZigBee transceiver to transmit the measured data outside the animal chest. The bioimpedance monitor is based in the 12 Bit Impedance Converter and Network Analyzer AD5933, improved with an analog front-end that implements a 4-electrode measurement structure and allows to measure small impedances. In the debugging prototype, the system autonomy exceeds 1 month when a 14 frequencies impedance spectrum is acquired every 5 minutes. The receiver side consists of a ZigBee transceiver connected to a PC to process the received data. In the current implementation, the effective range of the RF link was of a few centimeters, then needing a range extender placed close to the animal. We have increased it by using an antenna with higher gain. Basic errors in the phantom circuit parameters estimation after model fitting are below 1%.
dc.format.extent4 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Electrònica biomèdica
dc.subject.lcshImpedance spectroscopy
dc.subject.lcshZigBee
dc.titlePerformance of an implantable impedance spectroscopy monitor using ZigBee
dc.typeConference lecture
dc.subject.lemacEspectroscòpia d'impedància
dc.contributor.groupUniversitat Politècnica de Catalunya. IEB - Instrumentació Electrònica i Biomèdica
dc.identifier.doi10.1088/1742-6596/224/1/012163
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac2561826
dc.description.versionPostprint (published version)
local.citation.authorBogonez, F.; Bayés-Genis, A.; Rosell, F.; Bragos, R.
local.citation.contributorInternational Conference on Electrical Bioimpedance
local.citation.pubplaceFlorida
local.citation.publicationNameXIVth International Conference on Electrical Bioimpedance and the 11th Conference on Biomedical Applications of EIT
local.citation.startingPage1
local.citation.endingPage4


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple