Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorLázaro Ochoa, José Tomás
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractIn this paper we introduce the pseudo-normal form, which generalizes the notion of normal form around an equilibrium. Its convergence is proved for a general analytic system in a neighborhood of a saddle-center or a saddle-focus equilibrium point. If the system is Hamiltonian or reversible, this pseudo-normal form coincides with the Birkhoff normal form, so we present a new proof in these celebrated cases. From the convergence of the pseudo-normal form for a general analytic system several dynamical consequences are derived, like the existence of local invariant objects.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshDifferential equations
dc.subject.lcshGlobal analysis (Mathematics)
dc.subject.otherNormal Forms
dc.subject.otherPseudo-normal forms
dc.subject.otherHamiltonian and reversible systems
dc.titlePseudo-normal form near saddle-center or saddle-focus equilibria
dc.subject.lemacEquacions diferencials ordinàries
dc.subject.lemacVarietats (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34C Qualitative theory
dc.subject.amsClassificació AMS::58 Global analysis, analysis on manifolds
dc.rights.accessOpen Access
 Find Full text

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain