Mostra el registre d'ítem simple

dc.contributor.authorPouplana Sarda, Ignasi de
dc.contributor.authorOñate Ibáñez de Navarra, Eugenio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-02-15T19:20:00Z
dc.date.available2016-02-15T19:20:00Z
dc.date.issued2015
dc.identifier.citationDe Pouplana, I., Oñate, E. "An isotropic damage model for geomaterials in the Kratos framework". Barcelona: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 2015. ISBN 978-84-943307-8-0.
dc.identifier.isbn978-84-943307-8-0
dc.identifier.otherhttps://www.scipedia.com/public/Pouplana_2015
dc.identifier.urihttp://hdl.handle.net/2117/82974
dc.description.abstractProgressive fracture in quasi-brittle materials such as concrete, rocks, soils, is often treated as strain softening in continuum damage mechanics. Such constitutive relations favour spurious strain localization and ill-posedness of boundary value problems, and call for some kind of regularization. In the present work, two different approaches are presented: a partially regularized local damage model that adjusts the softening part of a stress-strain law depending on the size of the element, and a fully regularized non-local damage model that introduces the characteristic length as an additional material parameter controlling the size of the fracture process zone. In addition, the strain softening of such models usually results in highly complex structural responses, including the snap-back type, and thus in this work we will be discussing non-linearity associated to damage modelling, and a global arc-length method for tracing the equilibrium path will be exposed. Furthermore, in the context of non-local damage models it is crucial to work with fine spatial discretizations at the damage progress zone, so that elements are smaller than the characteristic length. In this regard, a meshadaptive technique has been implemented with the purpose of enhancing the efficiency of the numerical analysis. Finally, two classical examples, the three-point bending test, and the single-edge notched beam test, are performed in order to analyse the mesh objectivity of the implemented integral-type non-local damage model, and assess the strengths and limitations of the mesh-adaptive procedure.
dc.language.isoeng
dc.publisherCentre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshBrittleness--Mathematical models
dc.subject.otherquasi-brittle materials
dc.subject.othercontinuum damage mechanics
dc.subject.othermaterial non-linearity
dc.subject.othernon-local damage models
dc.subject.othermesh-adaptivity
dc.subject.otherMonograph CIMNE
dc.subject.otherMonografía CIMNE
dc.titleAn isotropic damage model for geomaterials in the Kratos framework
dc.typeBook
dc.subject.lemacFragilitat -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. GMNE - Grup de Mètodes Numèrics en Enginyeria
dc.relation.publisherversionhttps://books.cimne.com/shop/an-isotropic-damage-model-for-geomaterials-in-the-kratos-framework/
dc.rights.accessOpen Access
local.identifier.drac17508775
dc.description.versionPostprint (published version)
local.citation.authorDe Pouplana, I.; Oñate, E.
local.citation.pubplaceBarcelona
local.citation.publicationNameAn isotropic damage model for geomaterials in the Kratos framework


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple