Mostra el registre d'ítem simple

dc.contributor.authorMohammadi, Mahdi
dc.contributor.authorMadadi, Hojjat
dc.contributor.authorCasals Terré, Jasmina
dc.contributor.authorSellarès González, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2016-01-13T12:18:35Z
dc.date.issued2015-06-01
dc.identifier.citationMohammadi, M., Madadi, H., Casals, J., Sellarès, J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. "Analytical and bioanalytical chemistry", 01 Juny 2015, vol. 407, núm. 16, p. 4733-4744.
dc.identifier.issn1618-2642
dc.identifier.urihttp://hdl.handle.net/2117/81348
dc.description.abstractEvaluation and diagnosis of blood alterations is a common request for clinical laboratories, requiring a complex technological approach and dedication of health resources. In this paper, we present a microfluidic device that owing to a novel combination of hydrodynamic and dielectrophoretic techniques can separate plasma from fresh blood in a microfluidic channel and for the first time allows optical real-time monitoring of the components of plasma without pre- or post-processing. The microchannel is based on a set of dead-end branches at each side and is initially filled using capillary forces with a 2-mu L droplet of fresh blood. During this process, stagnation zones are generated at the dead-end branches and some red blood cells (RBCs) are trapped there. An electric field is then applied and dielectrophoretic trapping of RBCs is used to prevent more RBCs entering into the channel, which works like a sieve. Besides, an electroosmotic flow is generated to sweep the rest of the RBCs from the central part of the channel. Consequently, an RBC-free zone of plasma is formed in the middle of the channel, allowing real-time monitoring of the platelet behavior. To study the generation of stagnation zones and to ensure RBC trapping in the initial constrictions, two numerical models were solved. The proposed experimental design separates up to 0.1 mu L blood plasma from a 2-mu L fresh human blood droplet. In this study, a plasma purity of 99 % was achieved after 7 min, according to the measurements taken by image analysis.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subject.lcshBlood plasma -- Separation
dc.subject.lcshDielectrophoresis
dc.subject.otherBlood separation
dc.subject.otherDielectrophoresis
dc.subject.otherElectrokinetic
dc.subject.otherHydrodynamic
dc.subject.otherMicrofluidics
dc.subject.otherModeling
dc.subject.otherAnalytical devices
dc.subject.otherWhole-blood
dc.subject.otherMicrochannel
dc.subject.otherSimulations
dc.subject.otherTechnology
dc.subject.otherChip
dc.subject.otherFlow
dc.titleHydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation
dc.typeArticle
dc.subject.lemacPlasma sanguini - Separació
dc.subject.lemacdielectroforesi
dc.contributor.groupUniversitat Politècnica de Catalunya. DILAB - Laboratori de física dels materials dielèctrics
dc.identifier.doi10.1007/s00216-015-8678-2
dc.rights.accessRestricted access - author's decision
local.identifier.drac16260744
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//CTQ2013-48995-C2-1-R/ES/BIOMODIFICACION DE PAPELES PARA LA CONSTRUCCION DE DISPOSITIVOS MICROFLUIDICOS/
dc.date.lift10000-01-01
local.citation.authorMohammadi, M.; Madadi, H.; Casals, J.; Sellarès, J.
local.citation.publicationNameAnalytical and bioanalytical chemistry
local.citation.volume407
local.citation.number16
local.citation.startingPage4733
local.citation.endingPage4744


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple