Mostra el registre d'ítem simple

dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.authorHeltai, Luca
dc.contributor.authorMillán, Raúl Daniel
dc.contributor.authorDeSimone, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2015-11-16T19:43:39Z
dc.date.available2015-11-16T19:43:39Z
dc.date.issued2012-10
dc.identifier.citationArroyo, M., Heltai, L., Millán, D., DeSimone, A. Reverse engineering the euglenoid movement. "Proceedings of the National Academy of Sciences of the United States of America", Octubre 2012, vol. 109, núm. 44, p. 17874-17879.
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/2117/79339
dc.description.abstractEuglenids exhibit an unconventional motility strategy amongst unicellular eukaryotes, consisting of large-amplitude highly concerted deformations of the entire body (euglenoid movement or metaboly). A plastic cell envelope called pellicle mediates these deformations. Unlike ciliary or flagellar motility, the biophysics of this mode is not well understood, including its efficiency and molecular machinery. We quantitatively examine video recordings of four euglenids executing such motions with statistical learning methods. This analysis reveals strokes of high uniformity in shape and pace. We then interpret the observations in the light of a theory for the pellicle kinematics, providing a precise understanding of the link between local actuation by pellicle shear and shape control. We systematically understand common observations, such as the helical conformations of the pellicle, and identify previously unnoticed features of metaboly. While two of our euglenids execute their stroke at constant body volume, the other two exhibit deviations of about 20% from their average volume, challenging current models of low Reynolds number locomotion. We find that the active pellicle shear deformations causing shape changes can reach 340%, and estimate the velocity of the molecular motors. Moreover, we find that metaboly accomplishes locomotion at hydrodynamic efficiencies comparable to those of ciliates and flagellates. Our results suggest new quantitative experiments, provide insight into the evolutionary history of euglenids, and suggest that the pellicle may serve as a model for engineered active surfaces with applications in microfluidics.
dc.format.extent6 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica::Cinemàtica
dc.subject.lcshEuglenoids
dc.subject.lcshKinematics
dc.subject.otherActive soft matter
dc.subject.otherMicroswimmers
dc.subject.otherSelf-propulsion
dc.subject.otherStroke kinematics
dc.titleReverse engineering the euglenoid movement
dc.typeArticle
dc.subject.lemacCinemàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1073/pnas.1213977109
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.pnas.org/content/109/44/17874.abstract
dc.rights.accessOpen Access
local.identifier.drac11043452
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/240487/EU/Predictive models and simulations in nano- and biomolecular mechanics: a multiscale approach/PREDMODSIM
local.citation.authorArroyo, M.; Heltai, L.; Millán, D.; DeSimone, A.
local.citation.publicationNameProceedings of the National Academy of Sciences of the United States of America
local.citation.volume109
local.citation.number44
local.citation.startingPage17874
local.citation.endingPage17879


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple