Mostra el registre d'ítem simple

dc.contributor.authorGiorgiani, Giorgio
dc.contributor.authorFernandez Mendez, Sonia
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2015-11-03T14:03:44Z
dc.date.available2015-11-03T14:03:44Z
dc.date.issued2013
dc.identifier.citationGiorgiani, G., Fernandez, S., Huerta, A. Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. "International journal for numerical methods in fluids", 2013, vol. 72, núm. 12, p. 1244-1262.
dc.identifier.issn0271-2091
dc.identifier.urihttp://hdl.handle.net/2117/78723
dc.description.abstractA p-adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high-order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high-order continuous Galerkin method using static condensation of the interior nodes.
dc.format.extent19 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta
dc.subject.lcshGalerkin methods
dc.subject.otherscattering
dc.subject.otherHelmholtz equation
dc.subject.otherdiscontinuous Galerkin method
dc.subject.otherp-adaptivity
dc.subject.othererror estimation
dc.subject.otherhigh-order approximations
dc.subject.otherhybridization
dc.titleHybridizable discontinuous Galerkin p-adaptivity for wave propagation problems
dc.typeArticle
dc.subject.lemacGalerkin, Mètodes de
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1002/fld.3784
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::65 Numerical analysis::65N Partial differential equations, boundary value problems
dc.rights.accessOpen Access
drac.iddocument12915529
dc.description.versionPostprint (author’s final draft)
upcommons.citation.authorGiorgiani, G., Fernandez, S., Huerta, A.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameInternational journal for numerical methods in fluids
upcommons.citation.volume72
upcommons.citation.number12
upcommons.citation.startingPage1244
upcommons.citation.endingPage1262
 Find Full text

Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya