DSpace DSpace UPC
  Pàgina principal | Llistar continguts | Cerca avançada | Com participar-hi Català   Castellano   English  


Títol: On the monotone upper bound problem
Autor: Pfeifle, Julián
Ziegler, Günter M.
Altres autors/autores: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
Matèries: Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
Polytopes
Combinatory logic
Graph theory
Politops
Combinatoria
Grafs, Teoria de
Tipus de document: Article
Descripció: The Monotone Upper Bound Problem asks for the maximal number M(d,n) of vertices on a strictly-increasing edge-path on a simple d-polytope with n facets. More specifically, it asks whether the upper bound M(d,n) ≤ Mubt(d,n) provided by McMullen’s (1970) Upper Bound Theorem is tight, where Mubt(d,n) is the number of vertices of a dual-to-cyclic d-polytope with n facets. It was recently shown that the upper bound M(d,n) ≤ Mubt(d,n) holds with equality for small dimensions (d ≤ 4: Pfeifle, 2003) and for small corank (n ≤ d + 2: Gärtner et al., 2001). Here we prove that it is not tight in general: In dimension d=6 a polytope with n=9 facets can have Mubt(6,9)=30 vertices, but not more than 27 ≤ M(6,9) ≤ 29 vertices can lie on a strictly-increasing edge-path. The proof involves classification results about neighborly polytopes, Kalai’s (1988) concept of abstract objective functions, the Holt-Klee conditions (1998), explicit enumeration, Welzl’s (2001) extended Gale diagrams, randomized generation of instances, as well as non-realizability proofs via a version of the Farkas lemma.
Altres identificadors i accés: Pfeifle, J.; Ziegler, G. M. On the monotone upper bound problem. "Experimental mathematics", 2004, vol. 13, núm. 1, p. 1-11.
1058-6458
http://hdl.handle.net/2117/7737
Disponible al dipòsit:E-prints UPC
Comparteix:


SFX Query

Tots els ítems dipositats a UPCommons estan protegits per drets d'autor.

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius