Mostra el registre d'ítem simple

dc.contributor.authorCastro Pérez, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2015-07-20T12:24:19Z
dc.date.available2015-07-20T12:24:19Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationCastro, J. "Interior-point solver for convex separable block-angular problems". 2014.
dc.identifier.urihttp://hdl.handle.net/2117/76231
dc.description.abstractConstraints matrices with block-angular structures are pervasive in Optimization. Interior-point methods have shown to be competitive for these structured problems by exploiting the linear algebra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The preconditioner is based on a power series expansion which approximates the inverse of the matrix of the linking constraints system. In this work we present an efficient solver based on this algorithm. Some of its features are: it solves linearly constrained convex separable problems (linear, quadratic or nonlinear); both Newton and second-order predictor-corrector directions can be used, either with the Cholesky+PCG scheme or with a Cholesky factorization of normal equations; the preconditioner may include any number of terms of the power series; for any number of these terms, it estimates the spectral radius of the matrix in the power series (which is instrumental for the quality of the precondi- tioner). The solver has been hooked to SML, a structure-conveying modelling language based on the popular AMPL modeling language. Computational results are reported for some large and/or difficult instances in the literature: (1) multicommodity flow problems; (2) minimum congestion problems; (3) statistical data protection problems using l1 and l2 distances (which are linear and quadratic problems, respectively), and the pseudo-Huber function, a nonlinear approximation to l1 which improves the preconditioner. In the largest instances, of up to 25 millions of variables and 300000 constraints, this approach is from two to three orders of magnitude faster than state-of-the-art linear and quadratic optimization solvers.
dc.format.extent19 p.
dc.language.isoeng
dc.relation.ispartofseriesDR2014/03
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització
dc.subject.otherinterior-point methods
dc.subject.otherstructured problems
dc.subject.othernormal equations
dc.subject.otherpreconditioned
dc.subject.otherconjugate gradient
dc.subject.otherlarge-scale optimization
dc.subject.otheroptimization software
dc.titleInterior-point solver for convex separable block-angular problems
dc.typeExternal research report
dc.contributor.groupUniversitat Politècnica de Catalunya. GNOM - Grup d'Optimització Numèrica i Modelització
dc.subject.amsClassificació AMS::90 Operations research, mathematical programming
dc.rights.accessOpen Access
local.identifier.drac15281504
dc.description.versionPreprint
local.citation.authorCastro, J.


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple