Mostra el registre d'ítem simple

dc.contributor.authorFernández García, Daniel
dc.contributor.authorSánchez Vila, Francisco Javier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica
dc.date.accessioned2015-07-17T08:24:24Z
dc.date.available2015-12-31T01:30:49Z
dc.date.created2015-05
dc.date.issued2015-05
dc.identifier.citationFernandez, D., Sanchez, F. Mathematical equivalence between time-dependent single-rate and multirate mass transfer models. "Water resources research", Maig 2015, núm. 5, p. 3166-3180.
dc.identifier.issn0043-1397
dc.identifier.urihttp://hdl.handle.net/2117/76189
dc.description.abstractThe often observed tailing of tracer breakthrough curves is caused by a multitude of mass transfer processes taking place over multiple scales. Yet, in some cases, it is convenient to fit a transport model with a single-rate mass transfer coefficient that lumps all the non-Fickian observed behavior. Since mass transfer processes take place at all characteristic times, the single-rate mass transfer coefficient derived from measurements in the laboratory or in the field vary with time w(t). The literature review and tracer experiments compiled by Haggerty et al. (2004) from a number of sites worldwide suggest that the characteristic mass transfer time, which is proportional to w(t)^-1, scales as a power law of the advective and experiment duration. This paper studies the mathematical equivalence between the multirate mass transfer model (MRMT) and a time-dependent single-rate mass transfer model (t-SRMT). In doing this, we provide new insights into the previously observed scale-dependence of mass transfer coefficients. The memory function, g(t), which is the most salient feature of the MRMT model, determines the influence of the past values of concentrations on its present state. We found that the t-SRMT model can also be expressed by means of a memory function \phi(t,\tau). In this case, though the memory function is nonstationary, meaning that in general it cannot be written as \phi(t-\tau). Nevertheless, the full behavior of the concentrations using a single time-dependent rate w(t) is approximately analogous to that of the MRMT model provided that the equality w(t) = -dlng(t)/dt holds and the field capacity is properly chosen. This relationship suggests that when the memory function is a power law, g(t) \approx t^{1-k}, the equivalent mass transfer coefficient scales as w(t) \approx t^-1, nicely fitting without calibration the estimated mass transfer coefficients compiled by Haggerty et al. (2004).
dc.format.extent15 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia
dc.subject.lcshGroundwater flow--Mathematical models
dc.titleMathematical equivalence between time-dependent single-rate and multirate mass transfer models
dc.typeArticle
dc.subject.lemacAigües subterrànies -- Fluxe -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
dc.identifier.doi10.1002/2014WR016348
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/2014WR016348/full
dc.rights.accessOpen Access
local.identifier.drac16677700
dc.description.versionPostprint (published version)
local.citation.authorFernandez, D.; Sanchez, F.
local.citation.publicationNameWater resources research
local.citation.volume51
local.citation.number5
local.citation.startingPage3166
local.citation.endingPage3180


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple