Desenvolupar l'estudi de diversos sistemes complexos, caracteritzats per una dinàmica microscòpica senzilla que dóna lloc a un complex comportament macroscòpic. Les eines emprades són, per una banda, la simulació per ordinador fent servir: el mètode de la dinàmica molecular, el mètode de Montecarlo, els autòmats cel·lulars i els models discrets (IbM) basats en els elements biòtics i abiòtics que configuren el sistema. Per altra banda, també desenvolupem models teòrics, mitjançant teories de camp mitjà, equacions mestres, el grup de renormalització i altres temes de física fonamental. Els principals camps d'aplicació són: caracterització i modelització de xarxes complexes; criticalitat autoorganitzada; dany per radiació en aliatges; migració de fronteres i creixement de macles; modelització de sistemes microbians d'interès biotecnològic; microbiologia predictiva i seguretat alimentària; compostatge.

http://futur.upc.edu/SC-SIMBIO

The aim is to study complex systems characterised by simple microscopic dynamic rules that yield complex macroscopic behaviour. The tools employed for this purpose, which are based on computer simulation, include molecular dynamics and Monte Carlo methods, cellular automata, and individual-based models (IBMs), based on the biotic and abiotic elements of which a system is composed. Theoretical methods are also pursued, using mean-field theories, master equations, renormalisation groups and other fundamental tools in physics. The main fields of application are the characterisation and modelling of complex networks; self-organised criticality; radiation damage; boundary migration and twin growth; modelling of microbial systems for biotechnology; predictive microbiology and food safety; and the composting process.

http://futur.upc.edu/SC-SIMBIO

The aim is to study complex systems characterised by simple microscopic dynamic rules that yield complex macroscopic behaviour. The tools employed for this purpose, which are based on computer simulation, include molecular dynamics and Monte Carlo methods, cellular automata, and individual-based models (IBMs), based on the biotic and abiotic elements of which a system is composed. Theoretical methods are also pursued, using mean-field theories, master equations, renormalisation groups and other fundamental tools in physics. The main fields of application are the characterisation and modelling of complex networks; self-organised criticality; radiation damage; boundary migration and twin growth; modelling of microbial systems for biotechnology; predictive microbiology and food safety; and the composting process.

http://futur.upc.edu/SC-SIMBIO

Enviaments recents

Mostra'n més