Our main research topic is applied differential geometry. In particular
geometric structures in physics: lagrangian and hamiltonian formalisms, high-order systems, time-dependent systems, classical field theory, singular differential equations, symmetries and reduction, hamilton-jacobi theory, geometric quantization. And geometric methods in control theory: control of mechanical systems, geometric and algebraic control, optimal control and singular systems.

http://futur.upc.edu/DGDSA

Enviaments recents

  • A Hamiltonian study of the stability and bifurcations for the satellite problem 

    Muñoz Lecanda, Miguel Carlos; Rodríguez Olmos, Miguel Andrés; Teixidó Román, Miguel (2015-10-01)
    Article
    Accés obert
    We study the dynamics of a rigid body in a central gravitational field modeled as a Hamiltonian system with continuous rotational symmetries following the geometric framework of Wang et al. Novelties of our work are the ...
  • Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2 

    García Naranjo Ortiz de la Huerta, Luis Constantino; Marrero, Juan Carlos; Perez Chavela, Ernesto; Rodríguez Olmos, Miguel Andrés (2016-01-13)
    Article
    Accés restringit per política de l'editorial
    We classify and analyze the stability of all relative equilibria for the two-body problem in the hyperbolic space of dimension 2 and we formulate our results in terms of the intrinsic Riemannian data of the problem.
  • Music and mathematics. From Pythagoras to fractals 

    Gràcia Sabaté, Francesc Xavier (2015-12-30)
    Article
    Accés obert
  • Matemots 

    Gràcia Sabaté, Francesc Xavier (Societat Catalana de Matemàtiques (SCM), 2015-12)
    Article
    Accés obert
  • Matemots 

    Gràcia Sabaté, Francesc Xavier (Societat Catalana de Matemàtiques (SCM), 2014-07)
    Article
    Accés obert
  • Matemots 

    Gràcia Sabaté, Francesc Xavier (Societat Catalana de Matemàtiques (SCM), 2014-01)
    Article
    Accés obert
  • Matemots 

    Gràcia Sabaté, Francesc Xavier (Societat Catalana de Matemàtiques (SCM), 2013-07)
    Article
    Accés obert
  • Matemots 

    Gràcia Sabaté, Francesc Xavier (Societat Catalana de Matemàtiques (SCM), 2013-02)
    Article
    Accés obert
  • A new multisymplectic unified formalism for second order classical field theories 

    Prieto Martínez, Pedro Daniel; Román Roy, Narciso (American Institute of Mathematical Sciences, 2015-06-01)
    Article
    Accés obert
    We present a new multisymplectic framework for second-order classical field theories which is based on an extension of the unified LagrangianHamiltonian formalism to these kinds of systems. This model provides a straightforward ...
  • Hamilton-Jacobi theory in multisymplectic classical field theories 

    de León, Manuel; Prieto Martínez, Pedro Daniel; Román Roy, Narciso; Vilariño, Silvia (2015-04-08)
    Report de recerca
    Accés obert
    The geometric framework for the Hamilton-Jacobi theory developed in [14, 17, 39] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problema is stated for the Lagrangian and the ...

Mostra'n més