La geometria computacional, àrea primordial d'actuació del grup, és una disciplina a cavall entre les matemàtiques i la informàtica teòrica. El seu objectiu principal és el disseny i l'anàlisi d'algorismes per a la solució eficient de problemes geomètrics. En conseqüència, una tasca fonamental és la identificació de conceptes, propietats i tècniques que ajudin a la descoberta i implementació d'algorismes eficients. Això comporta l'estudi d'estructures de dades geomètriques, la complexitat d'algorismes, la representació i manipulació de figures i d'objectes, la construcció de llocs geomètrics i, més en general, el desenvolupament de la fonamentació geomètrica. En particular, els problemes estudiats inclouen la cerca i el recompte geomètrics, la convexitat i els processos afins, la proximitat, la intersecció, la triangulació, l'aproximació de formes i la visibilitat. Les àrees principals d'aplicació són la informàtica gràfica, el disseny i la fabricació assistits per ordinador, el reconeixement de formes, la morfologia geomètrica, el disseny VLSI, la visió per computador, els sistemes d'informació geogràfica i la robòtica.

http://futur.upc.edu/DCCG

Computational geometry, which is the main area of activity of the group, is a discipline that lies between mathematics and theoretical computer science. The group?s main objective is the design and analysis of algorithms for efficiently solving geometric problems. As a consequence, a fundamental task is to identify concepts, properties and techniques that will help to find and implement efficient geometric algorithms. This involves the study of geometric data structures, algorithm complexity, the representation and manipulation of figures and objects, geometric loci construction and, in general, the development of geometric principles. The problems studied include geometric search and enumeration, convexity and affine processes, proximity, intersection, triangulation, shape approximation and visibility. The main areas of application are computer graphics, computer-aided design and manufacturing, pattern recognition, computational morphology, VLSI design, computer vision, geographical information systems and robotics.

http://futur.upc.edu/DCCG

Computational geometry, which is the main area of activity of the group, is a discipline that lies between mathematics and theoretical computer science. The group?s main objective is the design and analysis of algorithms for efficiently solving geometric problems. As a consequence, a fundamental task is to identify concepts, properties and techniques that will help to find and implement efficient geometric algorithms. This involves the study of geometric data structures, algorithm complexity, the representation and manipulation of figures and objects, geometric loci construction and, in general, the development of geometric principles. The problems studied include geometric search and enumeration, convexity and affine processes, proximity, intersection, triangulation, shape approximation and visibility. The main areas of application are computer graphics, computer-aided design and manufacturing, pattern recognition, computational morphology, VLSI design, computer vision, geographical information systems and robotics.

http://futur.upc.edu/DCCG

Enviaments recents

  • Location in maximal outerplanar graphs 

    Claverol Aguas, Mercè; García, Alfredo; Hernández, Gregorio; Hernando Martín, María del Carmen; Maureso Sánchez, Montserrat; Mora Giné, Mercè; Tejel, Javier (2017)
    Text en actes de congrés
    Accés restringit per política de l'editorial
    In this work we study the metric dimension and the location-domination number of maximal outerplanar graphs. Concretely, we determine tight upper and lower bounds on the metric dimension and characterize those maximal ...
  • Stabbing segments with rectilinear objects 

    Claverol Aguas, Mercè; Garijo Royo, Delia; Korman, Matias; Seara Ojea, Carlos; Silveira, Rodrigo Ignacio (2017-09-15)
    Article
    Accés obert
    Given a set S of n line segments in the plane, we say that a region R¿R2 is a stabber for S if R contains exactly one endpoint of each segment of S. In this paper we provide optimal or near-optimal algorithms for ...
  • Locating-dominating partitions in graphs 

    Pelayo Melero, Ignacio Manuel; Hernando Martín, María del Carmen; Mora Giné, Mercè (2016)
    Text en actes de congrés
    Accés obert
    Let G = (V, E) be a connected graph of order n. Let ¿ = {S1, . . . , Sk} be a partition of V . Let r(u|¿) denote the vector of distances between a vertex v ¿ V and the elements of ¿, that is, r(v, ¿) = (d(v, S1), . . . ...
  • On perfect and quasiperfect dominations in graphs 

    Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel; Cáceres, José; Puertas, M. Luz (2017-02-27)
    Article
    Accés obert
    A subset S ¿ V in a graph G = ( V , E ) is a k -quasiperfect dominating set (for k = 1) if every vertex not in S is adjacent to at least one and at most k vertices in S . The cardinality of a minimum k -quasiperfect ...
  • Stabbing circles for sets of segments in the plane 

    Claverol Aguas, Mercè; Khramtcova, Elena; Papadopoulou, Evanthia; Saumell, Maria; Seara Ojea, Carlos (2017-03-13)
    Article
    Accés obert
    Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected ...
  • Map construction algorithms: an evaluation through hiking data 

    Duran, David; Sacristán Adinolfi, Vera; Silveira, Rodrigo Ignacio (Association for Computing Machinery (ACM), 2017)
    Text en actes de congrés
    Accés restringit per política de l'editorial
    We study five existing map construction algorithms, designed and tested with urban vehicle data in mind, and apply them to hiking trajectories with different terrain characteristics. Our main goal is to better understand ...
  • General properties of c-circulant digraphs 

    Mora Giné, Mercè; Serra Albó, Oriol; Fiol Mora, Miquel Àngel (1988)
    Article
    Accés obert
    A digraph is said to be a c-circulant if its adjacency matrix is c-circulant. This paper deals with general properties of this family of digraphs, as isomorphisms, regularity, strong connectivity, diameter and the relation ...
  • Implementing data-dependent triangulations with higher order Delaunay triangulations 

    Rodríguez, Natalia; Silveira, Rodrigo Ignacio (Association for Computing Machinery (ACM), 2016)
    Text en actes de congrés
    Accés restringit per política de l'editorial
    The Delaunay triangulation is the standard choice for building triangulated irregular networks (TINs) to represent terrain surfaces. However, the Delaunay triangulation is based only on the 2D coordinates of the data points, ...
  • Production matrices for geometric graphs 

    Huemer, Clemens; Pilz, Alexander; Seara Ojea, Carlos; Silveira, Rodrigo Ignacio (2016)
    Article
    Accés restringit per política de l'editorial
    We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot ...
  • New results on stabbing segments with a polygon 

    Díaz Bañez, José Miguel; Korman Cozzetti, Matías; Pérez Lantero, Pablo; Pilz, Alexander; Seara Ojea, Carlos; Silveira, Rodrigo Ignacio (2015-01-01)
    Article
    Accés obert
    We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment s is stabbed by a simple polygon P if at least one endpoint of s is contained in P, and a segment set S is stabbed ...

Mostra'n més