Mostra el registre d'ítem simple

dc.contributor.authorManzo, Carlo
dc.contributor.authorTorreno-Pina, Juan A.
dc.contributor.authorMassignan, Pietro
dc.contributor.authorLapeyre, Gerald J.
dc.contributor.authorLewenstein, Maciej
dc.contributor.authorGarcia-Parajo, Maria F.
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Ciències Fotòniques
dc.date.accessioned2015-03-24T16:21:17Z
dc.date.available2015-03-24T16:21:17Z
dc.date.issued2015-02-25
dc.identifier.citationManzo, Carlo [et al.]. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity. "Physical Review X", 25 Febrer 2015, vol. 5, núm. 011021.
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/2117/27009
dc.description.abstractMolecular transport in living systems regulates numerous processes underlying biological function. Although many cellular components exhibit anomalous diffusion, only recently has the subdiffusive motion been associated with nonergodic behavior. These findings have stimulated new questions for their implications in statistical mechanics and cell biology. Is nonergodicity a common strategy shared by living systems? Which physical mechanisms generate it? What are its implications for biological function? Here, we use single-particle tracking to demonstrate that the motion of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), a receptor with unique pathogen-recognition capabilities, reveals nonergodic subdiffusion on living-cell membranes In contrast to previous studies, this behavior is incompatible with transient immobilization, and, therefore, it cannot be interpreted according to continuous-time random-walk theory. We show that the receptor undergoes changes of diffusivity, consistent with the current view of the cell membrane as a highly dynamic and diverse environment. Simulations based on a model of an ordinary random walk in complex media quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as the cause of DC-SIGN behavior. By studying different receptor mutants, we further correlate receptor motion to its molecular structure, thus establishing a strong link between nonergodicity and biological function. These results underscore the role of disorder in cell membranes and its connection with function regulation. Because of its generality, our approach offers a framework to interpret anomalous transport in other complex media where dynamic heterogeneity might play a major role, such as those found, e.g., in soft condensed matter, geology, and ecology.
dc.format.extent12
dc.language.isoeng
dc.publisherAPS Physics
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica
dc.subject.lcshCells
dc.subject.otherliving cells
dc.titleWeak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity
dc.typeArticle
dc.subject.lemacCèl·lules
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.011021
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/288263/EU/Advanced photonic antenna tools for biosensing and cellular nanoimaging/NANO-VISTA
local.citation.authorManzo, Carlo; Torreno-Pina, Juan A.; Massignan, Pietro; Lapeyre, Gerald J.; Lewenstein, Maciej; Garcia Parajo, María F.
local.citation.publicationNamePhysical Review X
local.citation.volume5
local.citation.number011021


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple