Mostra el registre d'ítem simple

dc.contributor.authorBarardi, Alessandro
dc.contributor.authorSancristóbal Alonso, Belén de
dc.contributor.authorGarcía Ojalvo, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear
dc.date.accessioned2015-03-09T11:42:48Z
dc.date.available2015-03-09T11:42:48Z
dc.date.created2014-07-01
dc.date.issued2014-07-01
dc.identifier.citationBarardi, A.; Sancristobal, B.; Garcia-Ojalvo, J. Phase-Coherence Transitions and Communication in the Gamma Range between Delay-Coupled Neuronal Populations. "PLOS computational biology", 01 Juliol 2014, vol. 10, núm. 7.
dc.identifier.issn1553-734X
dc.identifier.urihttp://hdl.handle.net/2117/26619
dc.description.abstractSynchronization between neuronal populations plays an important role in information transmission between brain areas. In particular, collective oscillations emerging from the synchronized activity of thousands of neurons can increase the functional connectivity between neural assemblies by coherently coordinating their phases. This synchrony of neuronal activity can take place within a cortical patch or between different cortical regions. While short-range interactions between neurons involve just a few milliseconds, communication through long-range projections between different regions could take up to tens of milliseconds. How these heterogeneous transmission delays affect communication between neuronal populations is not well known. To address this question, we have studied the dynamics of two bidirectionally delayedcoupled neuronal populations using conductance-based spiking models, examining how different synaptic delays give rise to in-phase/anti-phase transitions at particular frequencies within the gamma range, and how this behavior is related to the phase coherence between the two populations at different frequencies. We have used spectral analysis and information theory to quantify the information exchanged between the two networks. For different transmission delays between the two coupled populations, we analyze how the local field potential and multi-unit activity calculated from one population convey information in response to a set of external inputs applied to the other population. The results confirm that zero-lag synchronization maximizes information transmission, although out-of-phase synchronization allows for efficient communication provided the coupling delay, the phase lag between the populations, and the frequency of the oscillations are properly matched.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut::Medicina::Neurologia
dc.subject.lcshNeurology
dc.subject.lcshBrain
dc.subject.otherSelective visual-attention
dc.subject.otherFast network oscillations
dc.subject.otherStimulus selection
dc.subject.otherSynchronization
dc.subject.otherCortex
dc.subject.otherInformation
dc.subject.otherDynamics
dc.subject.otherFrequency
dc.subject.otherAreas
dc.subject.otherInterneurons
dc.titlePhase-Coherence Transitions and Communication in the Gamma Range between Delay-Coupled Neuronal Populations
dc.typeArticle
dc.subject.lemacCervell
dc.subject.lemacCòrtex cerebral
dc.contributor.groupUniversitat Politècnica de Catalunya. DONLL - Dinàmica no Lineal, Òptica no Lineal i Làsers
dc.identifier.doi10.1371/journal.pcbi.1003723
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac15076375
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/289146/EU/Neural Engineering Transformative Technologies/NETT
local.citation.authorBarardi, A.; Sancristobal, B.; Garcia-Ojalvo, J.
local.citation.publicationNamePLOS computational biology
local.citation.volume10
local.citation.number7
dc.identifier.pmid25058021


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple