Mostra el registre d'ítem simple

dc.contributor.authorGuarracino, Luis
dc.contributor.authorRoetting, Tobias Stefan
dc.contributor.authorCarrera Ramírez, Jesús
dc.date.accessioned2014-07-25T14:41:34Z
dc.date.created2014-05-01
dc.date.issued2014-05-01
dc.identifier.citationGuarracino, L.; Roetting, T.; Carrera, J. A fractal model to describe the evolution of multiphase flow properties during mineral dissolution. "Advances in water resources", 01 Maig 2014, vol. 67, p. 78-86.
dc.identifier.issn0309-1708
dc.identifier.urihttp://hdl.handle.net/2117/23630
dc.description.abstractUnderstanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient. (C) 2014 Elsevier Ltd. All rights reserved.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherElsevier
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia subterrània
dc.subject.lcshRocks--Analysis
dc.subject.otherFractal model
dc.subject.otherMultiphase flow
dc.subject.otherPore size distribution
dc.subject.otherWater retention curve
dc.subject.otherDiffusion
dc.subject.otherDissolution
dc.subject.otherRepresentative elementary volume
dc.subject.otherPOROUS-MEDIA
dc.subject.otherHYDRAULIC CONDUCTIVITY
dc.subject.otherPERMEABILITY PREDICTION
dc.subject.otherDIFFUSION-COEFFICIENTS
dc.subject.otherUNSATURATED SOILS
dc.subject.otherSCALE
dc.subject.otherSANDSTONE
dc.titleA fractal model to describe the evolution of multiphase flow properties during mineral dissolution
dc.typeArticle
dc.subject.lemacRoques -- Anàlisi
dc.contributor.groupUniversitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
dc.identifier.doi10.1016/j.advwatres.2014.02.011
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac14844461
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/282900/EU/Predicting and monitoring the long-term behavior of CO2 injected in deep geological formations/PANACEA
dc.date.lift10000-01-01
local.citation.authorGuarracino, L.; Roetting, T.; Carrera, J.
local.citation.publicationNameAdvances in water resources
local.citation.volume67
local.citation.startingPage78
local.citation.endingPage86


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple