Mostra el registre d'ítem simple

dc.contributor.authorFernandes, Margarida M.
dc.contributor.authorFrancesko, Antonio
dc.contributor.authorTorrent Burgués, Juan
dc.contributor.authorCarrión Fité, Francisco Javier
dc.contributor.authorMacedo Fernandes, Margarida Maria
dc.contributor.authorTzanov, Tzanko
dc.contributor.authorHeinze, Thomas
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Química
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Tèxtil i Paperera
dc.date.accessioned2014-05-13T09:50:25Z
dc.date.created2014-03-08
dc.date.issued2014-03-08
dc.identifier.citationFernandes, M. [et al.]. Sonochemically processed cationic nanocapsules: Efficient antimicrobials with membrane disturbing capacity. "Biomacromolecules", 08 Març 2014, vol. 15, núm. 4, p. 1365-1374.
dc.identifier.issn1525-7797
dc.identifier.urihttp://hdl.handle.net/2117/22960
dc.description.abstractBacterial-mediated diseases are a major healthcare concern worldwide due to the rapid spread of antibiotic-resistant bacteria. One strategy to manage the bacterial infections while avoiding the emergence of resistant strains implies specific targeting and disruption of bacteria membranes. This work evaluates the potential of nanostructured biopolymer derivatives, nanocapsules (NCs), to disrupt the bacteria cell walls and effectively kill planktonic microorganisms. Two biopolymers, chitosan and cellulose, were chemically modified to synthesize derivatives with improved cationic character (thiolated chitosan and aminocellulose) prior to their processing into nanocapsules via a one-step sonochemical process. The interactions of NCs, displaying an average size of around 250 nm, with bacteria membrane were evaluated using two membrane models: Langmuir monolayers and liposome bilayers composed of a l-a-phosphatidylglycerol phospholipid extracted from Escherichia coli. NCs possessed improved membrane disturbing capacity in comparison to the nonprocessed biopolymer derivatives, by drastically increasing the monolayer fluidity and inducing more than 50% leakage of a dye inserted in the bilayered liposomes. In addition, membrane disturbance was directly proportional to the NCs cationic charge. Whereas evidence showed that thiolated chitosan and aminocellulose interacted with the bacteria membrane through a “carpet model”, the NCs were found to induce larger surface defects and high local perturbance through a “detergent model”. Importantly, the degree of disruption caused by the biopolymer derivatives and NCs correlated well with the antimicrobial capacity against Escherichia coli, selectively killing bacteria cells without imparting toxicity to human fibroblasts.
dc.format.extent10 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subject.lcshBiopolymers
dc.subject.lcshAnti-infective agents.
dc.subject.lcshNanocapsules
dc.titleSonochemically processed cationic nanocapsules: Efficient antimicrobials with membrane disturbing capacity
dc.typeArticle
dc.subject.lemacBiopolímers
dc.subject.lemacAgents antiinfecciosos
dc.contributor.groupUniversitat Politècnica de Catalunya. TECTEX - Grup de Recerca en Tecnologia Tèxtil
dc.contributor.groupUniversitat Politècnica de Catalunya. GBMI - Grup de Biotecnologia Molecular i Industrial
dc.identifier.doi10.1021/bm4018947
dc.relation.publisherversionhttp://pubs.acs.org/doi/abs/10.1021/bm4018947
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac13693517
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/331416/EU/Novel coatings to prevent biofilm formation on urinary catheters based on nanoantibiotics and quorum quenching compounds/NANOQUENCH
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/278402/EU/Novel approaches for prevention and degeneration of pathogenic bacteria biofilms formed on medical devices e.g. catheters/NOVO
dc.date.lift10000-01-01
local.citation.authorFernandes, M.; Francesko, A.; Torrent, J.; Carrion, F.; Macedo, M.M.; Tzanov, T.; Heinze, T.
local.citation.publicationNameBiomacromolecules
local.citation.volume15
local.citation.number4
local.citation.startingPage1365
local.citation.endingPage1374


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple