Mostra el registre d'ítem simple

dc.contributor.authorCaner, Ferhun Cem
dc.contributor.authorBažant, Zdeněk Pavel
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut de Tècniques Energètiques
dc.date.accessioned2013-04-08T12:51:14Z
dc.date.created2012-11-16
dc.date.issued2012-11-16
dc.identifier.citationCaner, F.C.; Bazant, Z. P. Microplane model M7 for plain concrete: II. Calibration and verification. "Journal of engineering mechanics", 16 Novembre 2012, p. 1-33.
dc.identifier.issn0733-9399
dc.identifier.urihttp://hdl.handle.net/2117/18700
dc.description.abstractThe microplane material model for concrete, formulated mathematically in the preceding Part I, is here calibrated by material test data from all the typical laboratory tests taken from the literature. Then the model is verified by finite elements simulations of data for some characteristic tests with highly nonuniform strain fields. The scaling properties of model M7 are determined. With the volumetric stress effect taken from the previous load step, the M7 numerical algorithm is explicit, delivering in each load step the stress tensor from the strain tensor, with no iterative loop. This makes the model robust and suitable for large-scale finite element computations. There are 5 free, easily adjustable material parameters, which make it possible to match the given compressive strength, the corresponding strain, the given hydrostatic compression curve, and certain triaxial aspects. Besides, there are many fixed, hard-to-adjust, parameters, which can be taken the same for all concretes. The optimum values of material parameters are determined by fitting a particularly broad range of test results, including the important tests of compression-tension load cycles, mixed-mode fracture, tension-shear failure of double-edge-notched specimens, and vertex effect when axial compression is followed by torsion. Because of the lack of information on the material characteristic length or fracture energy, which can be obtained only by size effect tests on the same concrete, and on the precise boundary conditions and precise gauge locations, the finite element fitting of the present test data can hardly be expected to give better results than single-point simulations of specimens with approximately homogeneous strain states within the gauge length. Nevertheless, tensile test data with severe localization are delocalized on the basis of assumed material length. Model M7 is shown to fit a considerably broader range of test data than the preceding models M1–M6.
dc.format.extent33 p.
dc.language.isoeng
dc.publisherAmerican Society of Civil Engineers (ASCE)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Metrologia
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Materials i estructures de formigó
dc.subject.lcshConcrete
dc.subject.lcshCalibration
dc.subject.lcshPhysical measurements
dc.titleMicroplane model M7 for plain concrete: II. Calibration and verification
dc.typeArticle
dc.subject.lemacCalibratge
dc.subject.lemacFormigó
dc.identifier.doi10.1061/(ASCE)EM.1943-7889.0000571
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac11802775
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorCaner, F.C.; Bazant, Z. P.
local.citation.publicationNameJournal of engineering mechanics
local.citation.startingPage1
local.citation.endingPage33


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple