Mostra el registre d'ítem simple

dc.contributor.authorZabala García, Francisco
dc.contributor.authorAlonso Pérez de Agreda, Eduardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica
dc.date.accessioned2012-07-26T15:54:17Z
dc.date.created2011
dc.date.issued2011
dc.identifier.citationZabala, F.; Alonso, E. E. Hydromechanical analysis in geotechnical engineering using the Material Point Method. A: International Conference on Computational Methods for Coupled Problems in Science and Engineering. "Computational Methods for Coupled Problems in Science and Engineering IV". Kos Island: Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 2011, p. 194-205.
dc.identifier.isbn978-84-89925-78-6
dc.identifier.urihttp://hdl.handle.net/2117/16352
dc.description.abstractThe explicit version of the Material Point Method has been extended in order to model coupled hydromechanical saturated problems. MPM discretizes the continuum, which is considered as a saturated soilfluid mixture, by dividing it into particles or material points. The discrete movement equations are not solved at the material points. Instead a support mesh, built to cover the domain of the problem, is used. In this paper it is assumed that particles carry all the variables needed to represent the state of the continuum including the pore pressure as a variable associated with each particle. The particle pore pressure increment is calculated explicitly using the equation of fluid mass balance, from the particle volumetric deformation and the fluid velocity relative to the soil skeleton, at the particle location. The shape functions used for the mesh elements are usually the same bi-linear functions of the Finite Element Method and therefore the background mesh elements suffer the same drawbacks. These drawbacks include: volumetric locking for quasi-incompressible materials when four particles per cell are used, which is equivalent to four integration points in the finite element method, pressure instability for quasi-incompressible and low permeability materials and the generation of zero energy modes when one particle per cell is used, which corresponds to reduced integration in the finite element method. The MPM original version has also the disadvantage of generating "noise" in the solution when a particle pass from one cell to another. A simple procedure that can be used to reduce instabilities is to consider constant stress at each cell equal to the stress average of the particles which are in the cell at the instant k. In this case the internal forces are obtained in the same way as in the finite element method when one point of integration is used, using the gradient of the shape functions calculated in the cell center. In this work, to avoid volumetric locking and simultaneously achieve a stable behavior, internal forces and pressure increments at the nodes are calculated using the gradients calculated at the cell center. The procedure is completely explicit and has proved to be stable for the low permeability values used to model the foundation of Aznalcollar dam. The simulation of Aznalcollar dam progressive failure is presented as an example.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherCentre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geotècnia::Mecànica de sòls
dc.subject.lcshSoil mechanics--Mathematical models
dc.subject.otherMaterial Point Method
dc.subject.otherpore pressure
dc.subject.otherfinite strain
dc.titleHydromechanical analysis in geotechnical engineering using the Material Point Method
dc.typeConference report
dc.subject.lemacMecànica dels sòls -- Mètodes numèrics
dc.contributor.groupUniversitat Politècnica de Catalunya. MSR - Mecànica del Sòls i de les Roques
dc.identifier.dlB-42316-2011
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac10739415
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorZabala, F.; Alonso, E. E.
local.citation.contributorInternational Conference on Computational Methods for Coupled Problems in Science and Engineering
local.citation.pubplaceKos Island
local.citation.publicationNameComputational Methods for Coupled Problems in Science and Engineering IV
local.citation.startingPage194
local.citation.endingPage205


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple