DSpace DSpace UPC
  Pàgina principal | Llistar continguts | Cerca avançada | Com participar-hi Català   Castellano   English  


Títol: Engineering membrane scaffolds with both physical and biomolecular signaling.
Autor: Tejeda-Montse, Esther
Smith, Katherine H.
Poch, Marta
López Bosque, Maria Jesús
Martín, Laura
Alonso, Matilde
Engel López, Elisabeth
Mata, Álvaro
Altres autors/autores: Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
Matèries: Àrees temàtiques de la UPC::Enginyeria dels materials
Tissue engineering
Tissue scaffolds
Nanotechnology
Regenerative medicine
Enginyeria de teixits
Membranes (Biologia)
Nanotecnologia
Medicina regenerativa
Tipus de document: Article
Descripció: We report on the combination of a top-down and bottom-up approach to develop thin bioactive membrane scaffolds based on functional elastin-like polymers (ELPs). Our strategy combines ELP cross-linking and assembly, and a variety of standard and novel micro/nanofabrication techniques to create self-supporting membranes down to ∼500 nm thick that incorporate both physical and biomolecular signals, which can be easily tailored for a specific application. In this study we used an ELP that included the cell-binding motif arginine–glycine–aspartic acid–serine (RGDS). Furthermore, fabrication processes were developed to create membranes that exhibited topographical patterns with features down to 200 nm in lateral dimensions and up to 10 μm in height on either one or both sides, uniform and well-defined pores, or multiple ELP layers. A variety of processing parameters were tested in order to optimize membrane fabrication, including ELP and cross-linker concentration, temperature, reaction time and ambient humidity. Membrane micro/nanopatterning, swelling and stiffness were characterized by atomic force microscopy, nanoindentation tests and scanning electron microscopy. Upon immersion in phosphate-buffered saline and an increase in temperature from 25 to 40 °C, membranes exhibited a significant increase in surface stiffness, with the reduced Young’s modulus increasing with temperature. Finally, rat mesenchymal stem cells were cultured on thin RGDS-containing membranes, which allowed cell adhesion, qualitatively enhanced spreading compared to membranes without RGDS epitopes and permitted proliferation. Furthermore, cell morphology was drastically affected by topographical patterns on the surface of the membranes.
Altres identificadors i accés: Tejeda-Montse, E. [et al.]. Engineering membrane scaffolds with both physical and biomolecular signaling.. "Acta biomaterialia", 07 Setembre 2011, vol. 8, núm. 3, p. 998-1009.
1742-7061
http://hdl.handle.net/2117/15016
10.1016/j.actbio.2011.09.005
Disponible al dipòsit:E-prints UPC
Comparteix:


SFX Query

Tots els ítems dipositats a UPCommons estan protegits per drets d'autor.

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius