DSpace DSpace UPC
  Pàgina principal | Llistar continguts | Cerca avançada | Com participar-hi Català   Castellano   English  


Títol: Inferring long memory processes in the climate network via ordinal pattern analysis
Autor: Barreiro, Marcelo
Marti, Arturo
Masoller Alonso, Cristina
Altres autors/autores: Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear; Universitat Politècnica de Catalunya. DONLL - Dinàmica no lineal, òptica no lineal i làsers
Matèries: Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria
Complex networks
Global climate modeling
Climatologia -- Models matemàtics
Xarxes complexes
Tipus de document: Article
Descripció: We analyze climatological data from a complex networks perspective, using techniques of nonlinear time series symbolic analysis. Specifically, we employ ordinal patterns and binary representations to analyze monthly averaged surface air temperature (SAT) anomalies. By computing the mutual information of the time series in regular grid points covering the Earth’s surface and then performing global thresholding, we construct climate networks that uncover short-term memory processes, as well as long ones (5–6 yr). Our results suggest that the time variability of the SAT anomalies is determined by patterns of oscillatory behavior that repeat from time to time with a periodicity related to intraseasonal variations and to El Niño on seasonal to interannual time scales. The present work is located at the triple intersection of three highly active interdisciplinary research fields in nonlinear science: symbolic methods for nonlinear time series analysis, network theory, and non linear processes in the earth climate. While a lot of effort is being done in order to improve our understanding of natural complex systems, with many different methods for mapping time series to network representations being investigated and employed in complex systems such as the human brain, our work is the first one aimed at characterizing the global climate network in terms of oscillatory patterns that tend to repeat from time to time, with various time scales. By mapping these processes into a global network, using ordinal patterns and binary representations, we find that the structure of the network changes drastically at different time scales.
Peer Reviewed
Postprint (published version)
Altres identificadors i accés: Barreiro, M.; Marti, A.; Masoller, C. Inferring long memory processes in the climate network via ordinal pattern analysis. "Chaos", Març 2011, vol. 21, núm. 1, p. 1-8.
1054-1500
http://hdl.handle.net/2117/13145
10.1063/1.3545273
Disponible al dipòsit:E-prints UPC
Comparteix:


SFX Query

Tots els ítems dipositats a UPCommons estan protegits per drets d'autor.

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius