Mostra el registre d'ítem simple

dc.contributor.authorMejía, Ignacio
dc.contributor.authorBedolla Jacuinde, Arnoldo
dc.contributor.authorMaldonado, Cuauhtémoc
dc.contributor.authorCabrera Marrero, José M.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2011-06-16T16:24:12Z
dc.date.available2011-06-16T16:24:12Z
dc.date.created2011-05-24
dc.date.issued2011-05-24
dc.identifier.citationMejía, I. [et al.]. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron. "Materials science and engineering A. Structural materials properties microstructure and processing", 24 Maig 2011, vol. 528, núm. 13-14, p. 4468-4474.
dc.identifier.issn0921-5093
dc.identifier.urihttp://hdl.handle.net/2117/12787
dc.description.abstractThe current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 ◦C) at a constant true strain rate of 0.001 s−1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 ◦C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 ◦C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile–brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 ◦C. Results are discussed in terms of boron segregation towards austenitic grain boundaries and second phase particles precipitation during plastic deformation and cooling.
dc.format.extent7 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials::Metal·lúrgia
dc.subject.lcshMaterials science
dc.titleHot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron
dc.typeArticle
dc.subject.lemacResistència de materials
dc.contributor.groupUniversitat Politècnica de Catalunya. PROCOMAME - Processos de Conformació de Materials Metàl·lics
dc.identifier.doi10.1016/j.msea.2011.02.040
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac5758472
dc.description.versionPostprint (published version)
local.citation.authorMejía, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.
local.citation.publicationNameMaterials science and engineering A. Structural materials properties microstructure and processing
local.citation.volume528
local.citation.number13-14
local.citation.startingPage4468
local.citation.endingPage4474


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple