DSpace DSpace UPC
  Pàgina principal | Llistar continguts | Cerca avançada | Com participar-hi Català   Castellano   English  

Títol: Backlund transformations on coadjoint orbits of the loop algebra gl(n)
Autor: Fedorov, Yuri
Altres autors/autores: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
Matèries: Difference equations
Hamiltonian systems
Loop Algebra
Equacions en diferències
Hamilton, Sistemes de
Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
Classificació AMS::39 Difference and functional equations::39A Difference equations
Tipus de document: Article
Descripció: There is a wide class of integrable Hamiltonian systems on finite-dimensional coadjoint orbits of the loop algebra ˜ gl(r) which are represented by r × r Lax equations with a rational spectral parameter.A reduced complex phase space is foliated with open subsets of Jacobians of regularized spectral curves.Under some generic restrictions on the structure of the Lax matrix, we propose an algebraic geometrical scheme of a discretization of such systems that preserve their first integrals and is represented as translations on the Jacobians.A generic discretizing map is given implicitly in the form of an intertwining relation (a discrete Lax pair) with an extra parameter governing the translation.Some special cases when the map is explicit are also considered.As an example, we consider a modified discrete version of the classical Neumann system described by a 2 × 2 discrete Lax pair and provide its theta-functional solution.
Altres identificadors i accés: http://hdl.handle.net/2117/1200
Disponible al dipòsit:E-prints UPC

SFX Query

Tots els ítems dipositats a UPCommons estan protegits per drets d'autor.


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius