Mostra el registre d'ítem simple

dc.contributor.authorIdier, Déborah
dc.contributor.authorFalqués Serra, Albert
dc.contributor.authorRohmer, Jérémy
dc.contributor.authorArriaga García, Jaime Alonso
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.identifier.citationIdier, D., Falques, A., Rohmer, J., Arriaga, J. Self-organized kilometer-scale shoreline sand wave generation: sensitivity to model and physical parameters. "Journal of Geophysical Research: Earth Surface", 19 Setembre 2017, vol. 122, núm. 8, p. 1-20.
dc.description.abstractThe instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle ¿c0˜ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to ¿c0 or low-angle wave instability.
dc.format.extent20 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshLittoral drift
dc.subject.lcshSand waves
dc.subject.otherComputer experiment
dc.subject.otherCritical angle
dc.subject.otherKilometer-scale shoreline sand waves
dc.subject.otherLittoral drift instabilities
dc.subject.otherMorphodynamic modeling
dc.subject.otherSensitivity analyis
dc.titleSelf-organized kilometer-scale shoreline sand wave generation: sensitivity to model and physical parameters
dc.contributor.groupUniversitat Politècnica de Catalunya. DF - Dinàmica No Lineal de Fluids
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorIdier, D., Falques, A., Rohmer, J., Arriaga, J.
upcommons.citation.publicationNameJournal of Geophysical Research: Earth Surface
 Find Full text

Fitxers d'aquest items


Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya