Mostra el registre d'ítem simple

dc.contributor.authorRue Queralt, Pau
dc.contributor.authorVillà-Freixa, Jordi
dc.contributor.authorBurrage, Kevin
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear
dc.date.accessioned2010-11-02T11:28:56Z
dc.date.available2010-11-02T11:28:56Z
dc.date.created2010-08-11
dc.date.issued2010-08-11
dc.identifier.citationRue, P.; Villà-Freixa, J.; Burrage, K. Simulation methods with extended stability for stiff biochemical Kinetics. "BMC systems biology", 11 Agost 2010, vol. 4, núm. 1, p. 110-123.
dc.identifier.issn1752-0509
dc.identifier.urihttp://hdl.handle.net/2117/10071
dc.description.abstractBackground: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be wellbehaved, leading to significantly larger step sizes. Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
dc.format.extent14 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica
dc.subject.lcshBiocomputers
dc.subject.lcshPoisson τ-leap methods
dc.subject.lcshRunge-Kutta (RK) τ-leap methods
dc.subject.lcshStiff biochemical Kinetics
dc.titleSimulation methods with extended stability for stiff biochemical Kinetics
dc.typeArticle
dc.subject.lemacInformàtica aplicada -- Medicina
dc.identifier.doi10.1186/1752-0509-4-110
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.biomedcentral.com/1752-0509/4/110
dc.rights.accessOpen Access
local.identifier.drac3572410
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/223920/EU/Virtual Physiological Human Network of Excellence/VPH NOE
local.citation.authorRue, P.; Villà-Freixa, J.; Burrage, K.
local.citation.publicationNameBMC systems biology
local.citation.volume4
local.citation.number1
local.citation.startingPage110
local.citation.endingPage123
dc.identifier.pmid20701766


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple