Mostra el registre d'ítem simple

dc.contributorRomero, Alessandro
dc.contributor.authorChover Lopez, Carlos
dc.date.accessioned2010-12-29T18:49:56Z
dc.date.available2010-12-29T18:49:56Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/2099.1/10714
dc.description.abstractIn the last century, new observational techniques and discoveries such as the Cosmic Microwave Background Radiation have brought a new dimension of knowledge about the Universe. Therefore new theories and models have been proposed to explain the observed Universe. Computer simulations are a very important tool because they lay a bridge between theory, often over-simpli ed, and observations, which reveal the complexity of our Universe. In this thesis, it is given a review of observations including the most important discoveries and results that help to describe the Universe and have been used to develop the models considered nowadays. The cosmological theory behind the large-scale structure formation is explained, from the basis of the Friedman model to the formation of structures through the linear, quasi-linear and non-linear regime, including the Zeldovich approximation and the spherical collapse model. Furthermore, the di erent types of codes used for cosmological simulations are introduced, focusing on the N-body codes and presenting the code used in this thesis, developed by Klypin & Holtzman (1997). The tools used to analyse the results: density plots, power spectrum and mass variance are described as well. Three main sets of simulations have been performed: a basic simulation (RUN0) with standard cosmological parameters, simulations of CDM and simulations of Hot+Cold Dark Matter (HCDM). All the simulations use 323 particles, while di erent cosmological parameters have been changed e.g. 8, m, and n. Thus, it is observed that higher values of m and low values of lead to more clustering and hence more developed structures. Moreover, the e ect of 8 appears to be critical, since it determines the amplitude of the density uctuations at the initial redshift of the simulation. When studying the presence of hot dark matter, the main di erence comes from the cut-o in the power spectrum due to the hot dark matter free-streaming, resulting in less developed structures. Similarly to the previous case, the e ects of the cosmological parameters are explained for this model. Finally, some additional simulations regarding dark halos populations and density pro- les are included in the Appendix.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.publisherChalmers Tekniska Högskola
dc.subjectÀrees temàtiques de la UPC::Física::Astronomia i astrofísica::Cosmologia i cosmogonia
dc.subject.lcshRadiation, Background
dc.subject.lcshCosmology -- Computer simulation
dc.titleSimulations of structure formation in the universe: hot vs. cold dark matter
dc.typeMaster thesis (pre-Bologna period)
dc.subject.lemacRadiació de fons
dc.subject.lemacCosmologia -- Simulació per ordinador
dc.rights.accessRestricted access - author's decision
dc.audience.educationlevelEstudis de primer/segon cicle
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria Industrial de Barcelona
dc.audience.degreeENGINYERIA INDUSTRIAL (Pla 1994)
dc.description.mobilityOutgoing


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple