DSpace DSpace UPC
  Pàgina principal | Llistar continguts | Cerca avançada | Com participar-hi Català   Castellano   English  


Títol: Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.
Autor: Dosev, Dosi Konstantinov
Altres autors/autores: Puigdollers i González, Joaquim; Pallarés Marzal, Josep; Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
Editorial: Universitat Politècnica de Catalunya
Matèries: 3307.Tecnologia electrònica
53 - Física
538.9 - Física de la matèria condensada
62 - Enginyeria. Tecnologia
621.3 - Enginyeria elèctrica. Electrotècnia. Telecomunicacions
Tipus de document: info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
Descripció: Hot-wire chemical vapour deposition (HWCVD) is a promising technique that permits polycrystalline silicon films with grain size of nanometers to be obtained at high deposition rates and low substrate temperatures. This material is expected to have better electronic properties than the commonly used amorphous hydrogenated silicon (a-Si:H).In this work, thin-film transistors (TFTs) were fabricated using nanocrystalline hydrogenated silicon film (nc-Si:H), deposited by HWCVD over thermally oxidized silicon wafer. The employed substrate temperature during the deposition process permits inexpensive materials as glasses or plastics to be used for various applications in large-area electronics. The deposition rate was about one order of magnitude higher than in other conventionally employed techniques. The deposited nc-Si:H films show good uniformity and reproducibility. The films consist of vertically grown columnar grains surrounded by amorphous phase. The columnar grains are thinner at the bottom (near the oxide interface) and thicker at the top of the film. Chromium layer was evaporated over the nc-Si:H in order to form drain and source contacts. Using photolithography techniques, two types of samples were fabricated. The first type (simplified) was with the chromium contacts directly deposited over the intrinsic nc-Si:H layer. No dry etching was involved in the fabrication process of this sample. The transistors on the wafer were not electrically separated from each other. Doped n+ layer was incorporated at the drain and source contacts in the second type of samples (complete samples). Dry etching was employed to eliminate the nc-Si:H between the TFTs and to isolate them electrically from each other.The electrical characteristics of both types of nc-Si:H TFTs were similar to a-Si:H based TFTs. Nevertheless, some significant differences were observed in the characteristics of the two types of samples. The increasing of the off-current in the simplified structure was eliminated by the n+ layer in the second type of samples. This led to the improving of the on/off ratio. The n+ layer also eliminated current crowding of the output characteristics. On the other hand, the subthreshold slope, the threshold voltage and the density of states were slightly deteriorated in the samples with incorporated n+ layer. Surface states created by the dry etching could be a possible reason. Other cause could be a bad quality of the nc-Si:H/SiO2 interface. The TFTs with incorporated n+ contact layer and electrically separated on the wafer were used in the further studies of stability and device modelling.The nc-Si:H TFTs were submitted under prolonged positive and negative gate bias stress in order to study their stability. We studied the influence of the stressing time and voltage on the transfer characteristics, threshold voltage, activation energy and density of states. The threshold voltage increased under positive gate bias stress and decreased under negative gate bias stress. After both positive and negative stresses, the threshold voltage recovered its initial values without annealing. This behaviour indicated that temporary charge trapping in the channel/gate insulator interface is the responsible process for the device performance under stress. Measurements of space-charge limited current confirmed that bulk states were not affected by the positive nor by negative stress.Analysis of the activation energy and the density of states gave more detailed information about the physical processes taking place during the stress. Typical drawback of the nc-Si:H films grown by HWCVD with tungsten (W) filament is the bad quality of the bottom, initially grown, interfacial layer. It is normally amorphous and porous. We assume that this property of the nc-Si:H film is determining for charge trapping and the consecutive temporary changes of the TFT's characteristics. On the other hand, the absence of defect-state creation during the gate bias stress demonstrates that the nc-Si:H films did not suffer degradation under the applied stress conditions. The electrical characteristics and the operational regimes of the nc-Si:H TFTs were studied in details in order to obtain the best possible fit using the Spice models for a-Si:H and poly-Si TFTs existing until now. The analysis of the transconductance gm showed behaviour typical for a-Si:H TFTs at low gate voltages. In contrast, at high gate voltages unexpected increasing of gm was observed, as in poly-Si TFTs. Therefore, it was impossible to fit the transfer and output characteristics with the a-Si:H TFT model neither with poly-Si TFT model.We performed numerical simulations using the Silvaco's Atlas simulator of semiconductor devices in order to understand the physical parameters, responsible for the device behaviour. The simulations showed that the reason for this behaviour is the density of acceptor-like states, which situates the properties of nc-Si:H TFTs between the amorphous and the polycrystalline transistors. Taking into account this result, we performed analysis of the concentrations of the free and the trapped carriers in nc-Si:H layer. It was found that nc-Si:H operates in transitional regime between above-threshold and crystalline-like regimes. This transitional regime was predicted earlier, but not experimentally observed until now. Finally, we introduced new equations and three new parameters into the existing a-Si TFTs model in order to account for the transitional regime. The new proposed model permits the shapes of the transconductance, the transfer and the output characteristics to be modelled accurately.
Altres identificadors i accés: http://hdl.handle.net/10803/6324
urn:isbn:8468821926
Disponible al dipòsit:Tesis doctorals - TDX
Comparteix:


SFX Query

Tots els ítems dipositats a UPCommons estan protegits per drets d'autor.

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius