Reports de recerca
http://hdl.handle.net/2117/3180
Fri, 27 Nov 2015 06:51:45 GMT2015-11-27T06:51:45ZPerfect anda quasiperfect domination in trees
http://hdl.handle.net/2117/77007
Perfect anda quasiperfect domination in trees
Cáceres, Jose; Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel; Puertas, M. Luz
Tue, 22 Sep 2015 10:11:25 GMThttp://hdl.handle.net/2117/770072015-09-22T10:11:25ZCáceres, JoseHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelPuertas, M. LuzOn global location-domination in bipartite graphs
http://hdl.handle.net/2117/28318
On global location-domination in bipartite graphs
Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel
Tue, 16 Jun 2015 09:42:50 GMThttp://hdl.handle.net/2117/283182015-06-16T09:42:50ZHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelApproximate results for rainbow labelings
http://hdl.handle.net/2117/27843
Approximate results for rainbow labelings
Lladó Sánchez, Ana M.
Article de recerca
Fri, 08 May 2015 11:21:05 GMThttp://hdl.handle.net/2117/278432015-05-08T11:21:05ZLladó Sánchez, Ana M.On star-forest ascending subgraph decomposition
http://hdl.handle.net/2117/27841
On star-forest ascending subgraph decomposition
Aroca Farrerons, José María; Lladó Sánchez, Ana M.
Fri, 08 May 2015 11:15:42 GMThttp://hdl.handle.net/2117/278412015-05-08T11:15:42ZAroca Farrerons, José MaríaLladó Sánchez, Ana M.Decomposing almost complete graphs by random trees
http://hdl.handle.net/2117/27840
Decomposing almost complete graphs by random trees
Lladó Sánchez, Ana M.
Fri, 08 May 2015 11:13:27 GMThttp://hdl.handle.net/2117/278402015-05-08T11:13:27ZLladó Sánchez, Ana M.On perfect and quasiperfect domination in graphs
http://hdl.handle.net/2117/27709
On perfect and quasiperfect domination in graphs
Cáceres, José; Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel; Puertas, M Luz
Mon, 04 May 2015 10:26:03 GMThttp://hdl.handle.net/2117/277092015-05-04T10:26:03ZCáceres, JoséHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelPuertas, M LuzGlobal location-domination in graphs
http://hdl.handle.net/2117/27680
Global location-domination in graphs
Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel
A dominating set S of a graph G is called
locating-dominating, LD-setfor short, if every vertex v not in S is uniquely determined by the set of neighbors of v
belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the
location-domination number (G). An LD-set
S of a graph G is global if it is an LD-set of both G and its complement G. The
global location-domination number g(G) is the minimum cardinality of a global LD-set of
G. In this work,we give some relations between locating-dominating sets and the location-domination number in a graph and its complement
Domination, Global domination, Locating domination, Complement graph, Block-cactus, Trees
Thu, 30 Apr 2015 08:12:31 GMThttp://hdl.handle.net/2117/276802015-04-30T08:12:31ZHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelA dominating set S of a graph G is called
locating-dominating, LD-setfor short, if every vertex v not in S is uniquely determined by the set of neighbors of v
belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the
location-domination number (G). An LD-set
S of a graph G is global if it is an LD-set of both G and its complement G. The
global location-domination number g(G) is the minimum cardinality of a global LD-set of
G. In this work,we give some relations between locating-dominating sets and the location-domination number in a graph and its complementJacobi matrices and boundary value problems in distance-regular graphs
http://hdl.handle.net/2117/14821
Jacobi matrices and boundary value problems in distance-regular graphs
Bendito Pérez, Enrique; Carmona Mejías, Ángeles; Encinas Bachiller, Andrés Marcos; Gago Álvarez, Silvia
In this work we analyze regular boundary value problems on a distance-regular graph associated with SchrÄodinger operators. These problems include the cases in which the boundary has two or one vertices. Moreover, we obtain the Green matrix for each regular problem. In each case, the Green matrices are given in terms of two families of orthogonal polynomials one of them corresponding with the distance polynomials of the distance-regular graphs.
Thu, 26 Jan 2012 10:21:55 GMThttp://hdl.handle.net/2117/148212012-01-26T10:21:55ZBendito Pérez, EnriqueCarmona Mejías, ÁngelesEncinas Bachiller, Andrés MarcosGago Álvarez, SilviaIn this work we analyze regular boundary value problems on a distance-regular graph associated with SchrÄodinger operators. These problems include the cases in which the boundary has two or one vertices. Moreover, we obtain the Green matrix for each regular problem. In each case, the Green matrices are given in terms of two families of orthogonal polynomials one of them corresponding with the distance polynomials of the distance-regular graphs.A differential approach for bounding the index of graphs under perturbations
http://hdl.handle.net/2117/12078
A differential approach for bounding the index of graphs under perturbations
Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Fri, 25 Mar 2011 15:57:30 GMThttp://hdl.handle.net/2117/120782011-03-25T15:57:30ZDalfó Simó, CristinaFiol Mora, Miquel ÀngelGarriga Valle, ErnestEdge-distance-regular graphs
http://hdl.handle.net/2117/11794
Edge-distance-regular graphs
Cámara Vallejo, Marc; Dalfó Simó, Cristina; Fàbrega Canudas, José; Fiol Mora, Miquel Àngel; Garriga Valle, Ernest
Edge-distance-regularity is a concept recently introduced by the authors which is
similar to that of distance-regularity, but now the graph is seen from each of its edges
instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with
the same intersection numbers for any edge taken as a root. In this paper we study
this concept, give some of its properties, such as the regularity of Γ, and derive some
characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the
(standard) incidence matrix. Also, the analogue of the spectral excess theorem for
distance-regular graphs is proved, so giving a quasi-spectral characterization of edgedistance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph.
Mon, 14 Mar 2011 08:32:42 GMThttp://hdl.handle.net/2117/117942011-03-14T08:32:42ZCámara Vallejo, MarcDalfó Simó, CristinaFàbrega Canudas, JoséFiol Mora, Miquel ÀngelGarriga Valle, ErnestEdge-distance-regularity is a concept recently introduced by the authors which is
similar to that of distance-regularity, but now the graph is seen from each of its edges
instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with
the same intersection numbers for any edge taken as a root. In this paper we study
this concept, give some of its properties, such as the regularity of Γ, and derive some
characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the
(standard) incidence matrix. Also, the analogue of the spectral excess theorem for
distance-regular graphs is proved, so giving a quasi-spectral characterization of edgedistance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph.