Articles de revista
http://hdl.handle.net/2117/395
2017-04-27T03:40:26ZSolvation dynamics in liquid water: III: energy fluxes and structural changes
http://hdl.handle.net/2117/103729
Solvation dynamics in liquid water: III: energy fluxes and structural changes
Rey Oriol, Rosendo; Hynes, James T.
In previous installments it has been shown how a detailed analysis of energy fluxes induced by electronic excitation of a solute can provide a quantitative understanding of the dominant molecular energy flow channels characterizing solvation—and in particular, hydration— relaxation dynamics. Here this work and power approach is complemented with a detailed characterization of the changes induced by such energy fluxes. We first examine the water solvent’s spatial and orientational distributions and the assorted energy fluxes in the various hydration shells of the solute to provide a molecular picture of the relaxation. The latter analysis is also used to address the issue of a possible “inverse snowball” effect, an ansatz concerning the time scales of the different hydration shells to reach equilibrium. We then establish a link between the instantaneous torque, exerted on the water solvent neighbors’ principal rotational axes immediately after excitation and the final energy transferred into those librational motions, which are the dominant short-time energy receptor.
2017-04-25T16:17:30ZRey Oriol, RosendoHynes, James T.In previous installments it has been shown how a detailed analysis of energy fluxes induced by electronic excitation of a solute can provide a quantitative understanding of the dominant molecular energy flow channels characterizing solvation—and in particular, hydration— relaxation dynamics. Here this work and power approach is complemented with a detailed characterization of the changes induced by such energy fluxes. We first examine the water solvent’s spatial and orientational distributions and the assorted energy fluxes in the various hydration shells of the solute to provide a molecular picture of the relaxation. The latter analysis is also used to address the issue of a possible “inverse snowball” effect, an ansatz concerning the time scales of the different hydration shells to reach equilibrium. We then establish a link between the instantaneous torque, exerted on the water solvent neighbors’ principal rotational axes immediately after excitation and the final energy transferred into those librational motions, which are the dominant short-time energy receptor.Structure of halo and quasi-halo helium–helium–alkali trimers
http://hdl.handle.net/2117/103533
Structure of halo and quasi-halo helium–helium–alkali trimers
Stipanovic, P.; Vranješ Markic, Leandra; Boronat Medico, Jordi
We report a diffusion Monte Carlo study of A4He2 and A4He3He trimers’ structural properties, were A is one of the alkali atoms 6,7Li, 23Na, 39K, 85Rb or 133Cs. Some of them are in a pure halo state, characterized by large spatial extent and universality, while some are close to the halo limit. The theoretical analysis of these trimers enables insight on how structural properties of weakly bound systems change when approaching the halo edge. For that purpose, two-variable distributions of inter-particle separations and angles were calculated. Extreme spatial extensions of some trimers with 3He confirm their halo nature. Although all the considered systems are floppy, trimers with all bound dimer subsystems are less spread and have significantly lower percentage of quasi-linear configurations than those which have at least one unbound dimer subsystem.
2017-04-18T17:45:04ZStipanovic, P.Vranješ Markic, LeandraBoronat Medico, JordiWe report a diffusion Monte Carlo study of A4He2 and A4He3He trimers’ structural properties, were A is one of the alkali atoms 6,7Li, 23Na, 39K, 85Rb or 133Cs. Some of them are in a pure halo state, characterized by large spatial extent and universality, while some are close to the halo limit. The theoretical analysis of these trimers enables insight on how structural properties of weakly bound systems change when approaching the halo edge. For that purpose, two-variable distributions of inter-particle separations and angles were calculated. Extreme spatial extensions of some trimers with 3He confirm their halo nature. Although all the considered systems are floppy, trimers with all bound dimer subsystems are less spread and have significantly lower percentage of quasi-linear configurations than those which have at least one unbound dimer subsystem.Two-dimensional domain structures in Lithium Niobate via domain inversion with ultrafast light
http://hdl.handle.net/2117/103122
Two-dimensional domain structures in Lithium Niobate via domain inversion with ultrafast light
Chen, Xin; Karpinski, Pawel; Shvedov, Vladlen; Wang, Bingxia; Trull Silvestre, José Francisco; Cojocaru, Crina; Boes, A.; Mitchell, A.; Krolikowski, Wieslaw; Sheng, Yan
Periodic inversion of ferroelectric domains is realized in a lithium niobate crystal by focused femtosecond near-infrared laser beam. One and two-dimensional domain patterns are fabricated. Quasi-phase matched frequency doubling of 815nm light is demonstrated in a channel waveguide with an inscribed periodic domain pattern with conversion efficiency as high as 17.45%.
2017-03-30T16:32:04ZChen, XinKarpinski, PawelShvedov, VladlenWang, BingxiaTrull Silvestre, José FranciscoCojocaru, CrinaBoes, A.Mitchell, A.Krolikowski, WieslawSheng, YanPeriodic inversion of ferroelectric domains is realized in a lithium niobate crystal by focused femtosecond near-infrared laser beam. One and two-dimensional domain patterns are fabricated. Quasi-phase matched frequency doubling of 815nm light is demonstrated in a channel waveguide with an inscribed periodic domain pattern with conversion efficiency as high as 17.45%.Droplets of trapped quantum dipolar bosons
http://hdl.handle.net/2117/103119
Droplets of trapped quantum dipolar bosons
Macia Rey, Adrián; Sánchez Baena, Juan; Boronat Medico, Jordi; Mazzanti Castrillejo, Fernando Pablo
Strongly interacting systems of dipolar bosons in three dimensions confined by harmonic traps are analyzed using the exact path integral ground-state Monte Carlo method. By adding a repulsive two-body potential, we find a narrow window of interaction parameters leading to stable ground-state configurations of droplets in a crystalline arrangement. We find that this effect is entirely due to the interaction present in the Hamiltonian without resorting to additional stabilizing mechanisms or specific three-body forces. We analyze the number of droplets formed in terms of the Hamiltonian parameters, relate them to the corresponding s-wave scattering length, and discuss a simple scaling model for the density profiles. Our results are in qualitative agreement with recent experiments showing a quantum Rosensweig instability in trapped Dy atoms.
2017-03-30T14:48:30ZMacia Rey, AdriánSánchez Baena, JuanBoronat Medico, JordiMazzanti Castrillejo, Fernando PabloStrongly interacting systems of dipolar bosons in three dimensions confined by harmonic traps are analyzed using the exact path integral ground-state Monte Carlo method. By adding a repulsive two-body potential, we find a narrow window of interaction parameters leading to stable ground-state configurations of droplets in a crystalline arrangement. We find that this effect is entirely due to the interaction present in the Hamiltonian without resorting to additional stabilizing mechanisms or specific three-body forces. We analyze the number of droplets formed in terms of the Hamiltonian parameters, relate them to the corresponding s-wave scattering length, and discuss a simple scaling model for the density profiles. Our results are in qualitative agreement with recent experiments showing a quantum Rosensweig instability in trapped Dy atoms.Gapped spectrum in pair-superfluid bosons
http://hdl.handle.net/2117/102969
Gapped spectrum in pair-superfluid bosons
Astrakharchik, Grigori; Zillich, Robert E.; Mazzanti Castrillejo, Fernando Pablo; Boronat Medico, Jordi
We study the ground state of a bilayer system of dipolar bosons with dipoles oriented by an external field perpendicularly to the two parallel planes. By decreasing the interlayer distance, for a fixed value of the strength of the dipolar interaction, the system undergoes a quantum phase transition from an atomic to a pair superfluid. We investigate the excitation spectrum on both sides of this transition by using two microscopic approaches. Quantum Monte Carlo methods are employed to obtain the static structure factors and intermediate scattering functions in imaginary time. The dynamic response is calculated using both the correlated basis functions (CBF) method and the approximate inversion of the Laplace transform of the quantum Monte Carlo imaginary time data. In the atomic phase, both the density and spin excitations are gapless. However, in the pair-superfluid phase a gap opens in the excitation energy of the spin mode. For small separation between layers, the minimal spin excitation energy equals the binding energy of a dimer and is twice the gap value.
2017-03-28T13:25:11ZAstrakharchik, GrigoriZillich, Robert E.Mazzanti Castrillejo, Fernando PabloBoronat Medico, JordiWe study the ground state of a bilayer system of dipolar bosons with dipoles oriented by an external field perpendicularly to the two parallel planes. By decreasing the interlayer distance, for a fixed value of the strength of the dipolar interaction, the system undergoes a quantum phase transition from an atomic to a pair superfluid. We investigate the excitation spectrum on both sides of this transition by using two microscopic approaches. Quantum Monte Carlo methods are employed to obtain the static structure factors and intermediate scattering functions in imaginary time. The dynamic response is calculated using both the correlated basis functions (CBF) method and the approximate inversion of the Laplace transform of the quantum Monte Carlo imaginary time data. In the atomic phase, both the density and spin excitations are gapless. However, in the pair-superfluid phase a gap opens in the excitation energy of the spin mode. For small separation between layers, the minimal spin excitation energy equals the binding energy of a dimer and is twice the gap value.Structure and dynamics of water at carbon-based interfaces
http://hdl.handle.net/2117/102926
Structure and dynamics of water at carbon-based interfaces
Martí Rabassa, Jordi; Calero, Carles; Franzese, Giancarlo
Water structure and dynamics are affected by the presence of a nearby interface. Here,
first we review recent results by molecular dynamics simulations about the effect of different carbon-based materials, including armchair carbon nanotubes and a variety of graphene sheets—flat and with corrugation—on water structure and dynamics. We discuss the calculations of binding energies, hydrogen bond distributions, water’s diffusion coefficients and their relation with surface’s geometries at different thermodynamical conditions. Next, we present new results of the crystallization and dynamics of water in a rigid graphene sieve. In particular, we show that the
diffusion of water confined between parallel walls depends on the plate distance in a non-monotonic way and is related to the water structuring, crystallization, re-melting and evaporation for decreasing inter-plate distance. Our results could be relevant in those applications where water is in contact with nanostructured carbon materials at ambient or cryogenic temperatures, as in man-made superhydrophobic materials or filtration membranes, or in techniques that take advantage of hydrated graphene interfaces, as in aqueous electron cryomicroscopy for the analysis of proteins adsorbed on graphene.
2017-03-27T17:11:41ZMartí Rabassa, JordiCalero, CarlesFranzese, GiancarloWater structure and dynamics are affected by the presence of a nearby interface. Here,
first we review recent results by molecular dynamics simulations about the effect of different carbon-based materials, including armchair carbon nanotubes and a variety of graphene sheets—flat and with corrugation—on water structure and dynamics. We discuss the calculations of binding energies, hydrogen bond distributions, water’s diffusion coefficients and their relation with surface’s geometries at different thermodynamical conditions. Next, we present new results of the crystallization and dynamics of water in a rigid graphene sieve. In particular, we show that the
diffusion of water confined between parallel walls depends on the plate distance in a non-monotonic way and is related to the water structuring, crystallization, re-melting and evaporation for decreasing inter-plate distance. Our results could be relevant in those applications where water is in contact with nanostructured carbon materials at ambient or cryogenic temperatures, as in man-made superhydrophobic materials or filtration membranes, or in techniques that take advantage of hydrated graphene interfaces, as in aqueous electron cryomicroscopy for the analysis of proteins adsorbed on graphene.Topological structure and the H index in complex networks
http://hdl.handle.net/2117/102685
Topological structure and the H index in complex networks
Pastor Satorras, Romualdo; Castellano, Claudio
The generalized H(n) Hirsch index of order n has been recently introduced and shown to interpolate between the degree and the K-core centrality in networks. We provide a detailed analytic characterization of the properties of sets of nodes having the same H(n), within the annealed network approximation. The connection between the Hirsch indices and the degree is highlighted. Numerical tests in synthetic uncorrelated networks and real-world correlated ones validate the findings. We also test the use of the Hirsch index for the identification of influential spreaders in networks, finding that it is in general outperformed by the recently introduced nonbacktracking centrality.
2017-03-20T19:23:16ZPastor Satorras, RomualdoCastellano, ClaudioThe generalized H(n) Hirsch index of order n has been recently introduced and shown to interpolate between the degree and the K-core centrality in networks. We provide a detailed analytic characterization of the properties of sets of nodes having the same H(n), within the annealed network approximation. The connection between the Hirsch indices and the degree is highlighted. Numerical tests in synthetic uncorrelated networks and real-world correlated ones validate the findings. We also test the use of the Hirsch index for the identification of influential spreaders in networks, finding that it is in general outperformed by the recently introduced nonbacktracking centrality.One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study
http://hdl.handle.net/2117/102684
One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study
Matveeva, N.; Astrakharchik, Grigori
A one-dimensional world is very unusual as there is an interplay between quantum statistics and geometry, and a strong short-range repulsion between atoms mimics Fermi exclusion principle, fermionizing the system. Instead, a system with a large number of components with a single atom in each, on the opposite acquires many bosonic properties. We study the ground-state properties of a multicomponent repulsive Fermi gas trapped in a harmonic trap by a fixed-node diffusion Monte Carlo method. The interaction between all components is considered to be the same. We investigate how the energetic properties (energy, contact) and correlation functions (density profile and momentum distribution) evolve as the number of components is changed. It is shown that the system fermionizes in the limit of strong interactions. Analytical expressions are derived in the limit of weak interactions within the local density approximation for an arbitrary number of components and for one plus one particle using an exact solution.
2017-03-20T18:57:22ZMatveeva, N.Astrakharchik, GrigoriA one-dimensional world is very unusual as there is an interplay between quantum statistics and geometry, and a strong short-range repulsion between atoms mimics Fermi exclusion principle, fermionizing the system. Instead, a system with a large number of components with a single atom in each, on the opposite acquires many bosonic properties. We study the ground-state properties of a multicomponent repulsive Fermi gas trapped in a harmonic trap by a fixed-node diffusion Monte Carlo method. The interaction between all components is considered to be the same. We investigate how the energetic properties (energy, contact) and correlation functions (density profile and momentum distribution) evolve as the number of components is changed. It is shown that the system fermionizes in the limit of strong interactions. Analytical expressions are derived in the limit of weak interactions within the local density approximation for an arbitrary number of components and for one plus one particle using an exact solution.Maxwell equations in the Debye potential formalism
http://hdl.handle.net/2117/102159
Maxwell equations in the Debye potential formalism
Fayos Vallés, Francisco; Llanta Salleras, Estanislao; Llosa, J
The authors propose a method for computing the electromagnetic test-field created by a given distribution of charges and currents using the Debye potential formalism in curved space-times. This framework has been applied explicitly to the Schwarzschild case.
2017-03-08T18:24:18ZFayos Vallés, FranciscoLlanta Salleras, EstanislaoLlosa, JThe authors propose a method for computing the electromagnetic test-field created by a given distribution of charges and currents using the Debye potential formalism in curved space-times. This framework has been applied explicitly to the Schwarzschild case.Luttinger parameter of quasi-one-dimensional para- H2
http://hdl.handle.net/2117/101993
Luttinger parameter of quasi-one-dimensional para- H2
Ferré Porta, Guillem; Gordillo Bargueño, Maria Carmen; Boronat Medico, Jordi
We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.
2017-03-06T20:05:14ZFerré Porta, GuillemGordillo Bargueño, Maria CarmenBoronat Medico, JordiWe have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.