Articles de revista
http://hdl.handle.net/2117/3499
20160501T04:30:53Z

A mathematical programming approach for different scenarios of bilateral bartering
http://hdl.handle.net/2117/85754
A mathematical programming approach for different scenarios of bilateral bartering
Nasini, Stefano; Castro Pérez, Jordi; Fonseca Casas, Pau
The analysis of markets with indivisible goods and fixed exogenous prices has played an important role in economic models, especially in relation to wage rigidity and unemployment. This paper provides a novel mathematical programming based approach to study pure exchange economies where discrete amounts of commodities are exchanged at fixed prices. Barter processes, consisting in sequences of elementary reallocations of couple of commodities among couples of agents, are formalized as local searches converging to equilibrium allocations. A direct application of the analysed processes in the context of computational economics is provided, along with a Java implementation of the described approaches.
20160415T15:03:14Z
Nasini, Stefano
Castro Pérez, Jordi
Fonseca Casas, Pau
The analysis of markets with indivisible goods and fixed exogenous prices has played an important role in economic models, especially in relation to wage rigidity and unemployment. This paper provides a novel mathematical programming based approach to study pure exchange economies where discrete amounts of commodities are exchanged at fixed prices. Barter processes, consisting in sequences of elementary reallocations of couple of commodities among couples of agents, are formalized as local searches converging to equilibrium allocations. A direct application of the analysed processes in the context of computational economics is provided, along with a Java implementation of the described approaches.

Transforming classic discrete event system specification models to specification and description language
http://hdl.handle.net/2117/80899
Transforming classic discrete event system specification models to specification and description language
Fonseca Casas, Pau
Discrete Event System Specification (DEVS) is one of the main widely used formal languages to represent simulation models, while Specification and Description Language (SDL) is a graphical ITUT standard language, commonly used in telecommunication and engineering areas. In this paper, we present an algorithm, and a simulation infrastructure that implements this algorithm, to transform a simulation model represented using the DEVS formalism to the SDL standard language. The algorithm can be viewed as a mechanism to represent graphically DEVS models. In addition, because of the transformation, one can use SDL tools in order to implement DEVS models. To implement the algorithm, we propose an Extensible Markup Language representation for the DEVS and SDL models. For practical application of the algorithm, it is implemented in a simulation infrastructure named the Specification and Description Language Parallel Simulator that allows defining the models with both formalisms.
20151218T11:34:14Z
Fonseca Casas, Pau
Discrete Event System Specification (DEVS) is one of the main widely used formal languages to represent simulation models, while Specification and Description Language (SDL) is a graphical ITUT standard language, commonly used in telecommunication and engineering areas. In this paper, we present an algorithm, and a simulation infrastructure that implements this algorithm, to transform a simulation model represented using the DEVS formalism to the SDL standard language. The algorithm can be viewed as a mechanism to represent graphically DEVS models. In addition, because of the transformation, one can use SDL tools in order to implement DEVS models. To implement the algorithm, we propose an Extensible Markup Language representation for the DEVS and SDL models. For practical application of the algorithm, it is implemented in a simulation infrastructure named the Specification and Description Language Parallel Simulator that allows defining the models with both formalisms.

Comfort and economic criteria for selecting passive measures for the energy refurbishment of residential buildings in Catalonia
http://hdl.handle.net/2117/80421
Comfort and economic criteria for selecting passive measures for the energy refurbishment of residential buildings in Catalonia
Ortiz, Joana Aina; Fonseca i Casas, Antoni; Salom Tormo, Jaume; Garrido Soriano, Núria; Fonseca Casas, Pau; Russo, Verdiana
This paper presents a detailed method to develop costoptimal studies for the energy renovation of residential buildings. A realistic characterization of the building has been introduced, using measurement and survey data. The method allows improving the interaction between the occupancy and the building,and the characterization of the real state of the construction. In addition, the building simulation includes vernacular strategies of the Mediterranean architecture, as for example the natural ventilation and theuse of solar protection. The method presented takes part of an innovative approach: twostep evaluation considering thermal comfort, energy and economic criteria. The passive evaluation is the focus of the paper and evaluates the passive measures from an economic and thermal comfort point of view. This method prioritizes the passive measures rather than the active ones, considering the thermal comfort of the users as a criterion of decision. The paper shows the results of a multifamily building built in the years 1990–2007 and located in two climates C2 and B3 (Barcelona and Tarragona). The method provides technical and economic information about a set of passive energy efficiency measures, with the objective to help to make decisions for choosing the appropriate combination of passive measures.
20151211T11:47:11Z
Ortiz, Joana Aina
Fonseca i Casas, Antoni
Salom Tormo, Jaume
Garrido Soriano, Núria
Fonseca Casas, Pau
Russo, Verdiana
This paper presents a detailed method to develop costoptimal studies for the energy renovation of residential buildings. A realistic characterization of the building has been introduced, using measurement and survey data. The method allows improving the interaction between the occupancy and the building,and the characterization of the real state of the construction. In addition, the building simulation includes vernacular strategies of the Mediterranean architecture, as for example the natural ventilation and theuse of solar protection. The method presented takes part of an innovative approach: twostep evaluation considering thermal comfort, energy and economic criteria. The passive evaluation is the focus of the paper and evaluates the passive measures from an economic and thermal comfort point of view. This method prioritizes the passive measures rather than the active ones, considering the thermal comfort of the users as a criterion of decision. The paper shows the results of a multifamily building built in the years 1990–2007 and located in two climates C2 and B3 (Barcelona and Tarragona). The method provides technical and economic information about a set of passive energy efficiency measures, with the objective to help to make decisions for choosing the appropriate combination of passive measures.

Optimal buildings’ energy consumption calculus through a distributed experiment execution
http://hdl.handle.net/2117/78876
Optimal buildings’ energy consumption calculus through a distributed experiment execution
Fonseca Casas, Pau; Fonseca i Casas, Antoni; Garrido Soriano, Núria; Ortiz, Joana; Casanovas Garcia, Josep; Solom, Jaume
The calculus of building energy consumption is a demanding task because multiple factors must be considered during experimentation. Additionally, the definition of the model and the experiments is complex because the problem is multidisciplinary. When we face complex models and experiments that require a considerable amount of computational resources, the application of solutions is imperative to reduce the amount of time needed to define the model and the experiments and to obtain the answers. In this paper, we first address the definition and the implementation of an environmental model that describes the behavior of a building from a sustainability point of view and enables the use of several simulations and calculus engines in a cosimulation scenario. Second, we define a distributed experimental framework that enables us to obtain results in an accurate amount of time. This methodology has been applied to the energy consumption calculation, but it can also be applied to other modeling problems that usually require a considerable amount of resources by reducing the amount of time needed to perform modeling, implementation, verification, and experimentation.
20151106T11:02:33Z
Fonseca Casas, Pau
Fonseca i Casas, Antoni
Garrido Soriano, Núria
Ortiz, Joana
Casanovas Garcia, Josep
Solom, Jaume
The calculus of building energy consumption is a demanding task because multiple factors must be considered during experimentation. Additionally, the definition of the model and the experiments is complex because the problem is multidisciplinary. When we face complex models and experiments that require a considerable amount of computational resources, the application of solutions is imperative to reduce the amount of time needed to define the model and the experiments and to obtain the answers. In this paper, we first address the definition and the implementation of an environmental model that describes the behavior of a building from a sustainability point of view and enables the use of several simulations and calculus engines in a cosimulation scenario. Second, we define a distributed experimental framework that enables us to obtain results in an accurate amount of time. This methodology has been applied to the energy consumption calculation, but it can also be applied to other modeling problems that usually require a considerable amount of resources by reducing the amount of time needed to perform modeling, implementation, verification, and experimentation.

Using specification and description language to formalize multiagent systems
http://hdl.handle.net/2117/28481
Using specification and description language to formalize multiagent systems
Fonseca Casas, Pau
Simulation is a multidisciplinary field of study used in different scopes, involving people with different areas of knowledge and backgrounds. Formal languages become important tools in order to build, understand, and maintain the simulation models. The formalization of an intelligent agent is not an easy task because of the complex behavior it owns. In this study, we apply a formal and graphical language, called Specification and Description Language, to formalize an intelligent agent. This formalization captures the complete and unambiguous behavior of the agents and simplifies the understanding of the agents’ behaviors because of the graphic structure of the language. This formal representation of the model also simplifies joining multiagent system (MAS) models and interaction models through the formalization. In addition, because Specification and Description Language is a standard language, several tools are capable of understanding the model, which leads to an automatic implementation.
20150701T08:31:37Z
Fonseca Casas, Pau
Simulation is a multidisciplinary field of study used in different scopes, involving people with different areas of knowledge and backgrounds. Formal languages become important tools in order to build, understand, and maintain the simulation models. The formalization of an intelligent agent is not an easy task because of the complex behavior it owns. In this study, we apply a formal and graphical language, called Specification and Description Language, to formalize an intelligent agent. This formalization captures the complete and unambiguous behavior of the agents and simplifies the understanding of the agents’ behaviors because of the graphic structure of the language. This formal representation of the model also simplifies joining multiagent system (MAS) models and interaction models through the formalization. In addition, because Specification and Description Language is a standard language, several tools are capable of understanding the model, which leads to an automatic implementation.

Passenger flow simulation in a hub airport: an application to the Barcelona International Airport
http://hdl.handle.net/2117/28478
Passenger flow simulation in a hub airport: an application to the Barcelona International Airport
Fonseca Casas, Pau; Casanovas Garcia, Josep; Ferran, Xavier
This paper describes a conceptual model intended to be applied in a general approach to the microsimulation of hub airports terminals. The proposed methodology is illustrated with the development of a simulation model originally intended to help in the design of the new terminal at Barcelona International Airport. This model represents in detail, among many other elements, passengers’ flows in the different areas of these complex facilities. Agentbased simulation techniques were included to represent the different actors’ behaviors, and a formal representation of the model using Specification and Description Language (SDL) was used to represent the complexity of all the system elements. To preprocess a diverse and considerable amount of raw data provided by airport designers and other sources to feed the simulation environment Flight Planner Manager was developed as a toolkit to parameterize the different model factors and to generate required specific input data. This project was conducted over 3 years leading to the development of a system not only conceived to assess in the airport initial design process but also to constitute a recurrent decision taking instrument to dynamically optimize terminal management and operations.
20150701T07:58:10Z
Fonseca Casas, Pau
Casanovas Garcia, Josep
Ferran, Xavier
This paper describes a conceptual model intended to be applied in a general approach to the microsimulation of hub airports terminals. The proposed methodology is illustrated with the development of a simulation model originally intended to help in the design of the new terminal at Barcelona International Airport. This model represents in detail, among many other elements, passengers’ flows in the different areas of these complex facilities. Agentbased simulation techniques were included to represent the different actors’ behaviors, and a formal representation of the model using Specification and Description Language (SDL) was used to represent the complexity of all the system elements. To preprocess a diverse and considerable amount of raw data provided by airport designers and other sources to feed the simulation environment Flight Planner Manager was developed as a toolkit to parameterize the different model factors and to generate required specific input data. This project was conducted over 3 years leading to the development of a system not only conceived to assess in the airport initial design process but also to constitute a recurrent decision taking instrument to dynamically optimize terminal management and operations.

Geographical differences in whooping cough in Catalonia, Spain, from 1990 to 2010
http://hdl.handle.net/2117/28471
Geographical differences in whooping cough in Catalonia, Spain, from 1990 to 2010
Crespo, Inma; Soldevila, Nuria; Muñoz Gracia, María del Pilar; Godoy, Pere; Carmona, Gloria; Domínguez García, Angela
Whooping cough is a communicable disease whose incidence has increase d in recent years in some countries with vaccination. Since 1981, in Catalonia (Spain), cases must be reported to the Public Health Department. In 1997, surveillance changed from aggrega ted counts to individual report and the surveillance system was improved after 2002. Ca talan public health is universal with equal coverage geographically. The aim of this st udy was to determine whether there are differences in whooping cough incidence in rural and urban counties.
20150630T11:56:03Z
Crespo, Inma
Soldevila, Nuria
Muñoz Gracia, María del Pilar
Godoy, Pere
Carmona, Gloria
Domínguez García, Angela
Whooping cough is a communicable disease whose incidence has increase d in recent years in some countries with vaccination. Since 1981, in Catalonia (Spain), cases must be reported to the Public Health Department. In 1997, surveillance changed from aggrega ted counts to individual report and the surveillance system was improved after 2002. Ca talan public health is universal with equal coverage geographically. The aim of this st udy was to determine whether there are differences in whooping cough incidence in rural and urban counties.

Comments on: spacetime wind speed forecasting for improved power system dispatch
http://hdl.handle.net/2117/28469
Comments on: spacetime wind speed forecasting for improved power system dispatch
Muñoz Gracia, María del Pilar
20150630T11:41:06Z
Muñoz Gracia, María del Pilar

Formal simulation model to optimize building sustainability
http://hdl.handle.net/2117/28468
Formal simulation model to optimize building sustainability
Fonseca Casas, Pau; Fonseca Casas, Antoni; Garrido Soriano, Núria; Casanovas Garcia, Josep
In this work, we present a simulation model that makes it possible to find optimal values for various building parameters and the associated impacts that reduce the energy demand or consumption of the building. In the study, we consider several situations with different levels of thermal insulation. To define and to integrate the different models, a formal language (Specification and Description Language, SDL) is used. The main reason for using this formal language is that it makes it possible to define simulation models from graphical diagrams in an unambiguous and standard way. This simplifies the multidisciplinary interaction between team members. Additionally, the fact that SDL is an ISO standard simplifies its implementation because several tools understand this language. This simplification of the model makes it possible to increase the model credibility and simplify the validation and verification processes. In the present project, the simulation tools used were SDLPS (to rule the main simulation process) and Energy+ (as a calculus engine for energy demand). The interactions between all these tools are detailed and specified in the model, allowing a deeper comprehension of the process that define the life of a building from the point of view of its sustainability. © 2014 Elsevier Ltd. All rights reserved.
20150630T11:35:46Z
Fonseca Casas, Pau
Fonseca Casas, Antoni
Garrido Soriano, Núria
Casanovas Garcia, Josep
In this work, we present a simulation model that makes it possible to find optimal values for various building parameters and the associated impacts that reduce the energy demand or consumption of the building. In the study, we consider several situations with different levels of thermal insulation. To define and to integrate the different models, a formal language (Specification and Description Language, SDL) is used. The main reason for using this formal language is that it makes it possible to define simulation models from graphical diagrams in an unambiguous and standard way. This simplifies the multidisciplinary interaction between team members. Additionally, the fact that SDL is an ISO standard simplifies its implementation because several tools understand this language. This simplification of the model makes it possible to increase the model credibility and simplify the validation and verification processes. In the present project, the simulation tools used were SDLPS (to rule the main simulation process) and Energy+ (as a calculus engine for energy demand). The interactions between all these tools are detailed and specified in the model, allowing a deeper comprehension of the process that define the life of a building from the point of view of its sustainability. © 2014 Elsevier Ltd. All rights reserved.

Deadlockfree scheduling method for flexible manufacturing systems based on timed colored Petri nets and Anytime Heuristic Search
http://hdl.handle.net/2117/28096
Deadlockfree scheduling method for flexible manufacturing systems based on timed colored Petri nets and Anytime Heuristic Search
Baruwa, Olatunde T.; Piera, Miquel Angel; Guasch Petit, Antonio
This paper addresses the deadlock (DL)free scheduling problem of flexible manufacturing systems (FMS) characterized by resource sharing, limited buffer capacity, routing flexibility, and the availability of material handling systems. The FMS scheduling problem is formulated using timed colored Petri net (TCPN) modeling where each operation has a certain number of preconditions, an estimated duration, and a set of postconditions. Based on the reachability analysis of TCPN modeling, we propose a new anytime heuristic search algorithm which finds optimal or nearoptimal DLfree schedules with respect to makespan as the performance criterion. The methodology tackles the timeconstrained problem of very demanding systems (high diversity production and maketoorder) in which computational time is a critical factor to produce optimal schedules that are DLfree. In such a rapidly changing environment and under tight customer duedates, producing optimal schedules becomes intractable given the time limitations and the NPhard nature of scheduling problems. The proposed anytime search algorithm combines breadthfirst iterative deepening A* with suboptimal breadthfirst heuristic search and backtracking. It guarantees that the search produces the best solution obtained so far within the allotted computation time and provides better solutions when given more time. The effectiveness of the approach is evaluated on a comprehensive benchmark set of DLprone FMS examples and the computational results show the superiority of the proposed approach over the previous works.
20150528T13:24:17Z
Baruwa, Olatunde T.
Piera, Miquel Angel
Guasch Petit, Antonio
This paper addresses the deadlock (DL)free scheduling problem of flexible manufacturing systems (FMS) characterized by resource sharing, limited buffer capacity, routing flexibility, and the availability of material handling systems. The FMS scheduling problem is formulated using timed colored Petri net (TCPN) modeling where each operation has a certain number of preconditions, an estimated duration, and a set of postconditions. Based on the reachability analysis of TCPN modeling, we propose a new anytime heuristic search algorithm which finds optimal or nearoptimal DLfree schedules with respect to makespan as the performance criterion. The methodology tackles the timeconstrained problem of very demanding systems (high diversity production and maketoorder) in which computational time is a critical factor to produce optimal schedules that are DLfree. In such a rapidly changing environment and under tight customer duedates, producing optimal schedules becomes intractable given the time limitations and the NPhard nature of scheduling problems. The proposed anytime search algorithm combines breadthfirst iterative deepening A* with suboptimal breadthfirst heuristic search and backtracking. It guarantees that the search produces the best solution obtained so far within the allotted computation time and provides better solutions when given more time. The effectiveness of the approach is evaluated on a comprehensive benchmark set of DLprone FMS examples and the computational results show the superiority of the proposed approach over the previous works.