Reports de recerca
http://hdl.handle.net/2117/3198
2015-11-25T14:47:39ZPerfect anda quasiperfect domination in trees
http://hdl.handle.net/2117/77007
Perfect anda quasiperfect domination in trees
Cáceres, Jose; Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel; Puertas, M. Luz
2015-09-22T10:11:25ZCáceres, JoseHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelPuertas, M. LuzOn global location-domination in bipartite graphs
http://hdl.handle.net/2117/28318
On global location-domination in bipartite graphs
Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel
2015-06-16T09:42:50ZHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelOn perfect and quasiperfect domination in graphs
http://hdl.handle.net/2117/27709
On perfect and quasiperfect domination in graphs
Cáceres, José; Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel; Puertas, M Luz
2015-05-04T10:26:03ZCáceres, JoséHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelPuertas, M LuzGlobal location-domination in graphs
http://hdl.handle.net/2117/27680
Global location-domination in graphs
Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel
A dominating set S of a graph G is called
locating-dominating, LD-setfor short, if every vertex v not in S is uniquely determined by the set of neighbors of v
belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the
location-domination number (G). An LD-set
S of a graph G is global if it is an LD-set of both G and its complement G. The
global location-domination number g(G) is the minimum cardinality of a global LD-set of
G. In this work,we give some relations between locating-dominating sets and the location-domination number in a graph and its complement
Domination, Global domination, Locating domination, Complement graph, Block-cactus, Trees
2015-04-30T08:12:31ZHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelA dominating set S of a graph G is called
locating-dominating, LD-setfor short, if every vertex v not in S is uniquely determined by the set of neighbors of v
belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the
location-domination number (G). An LD-set
S of a graph G is global if it is an LD-set of both G and its complement G. The
global location-domination number g(G) is the minimum cardinality of a global LD-set of
G. In this work,we give some relations between locating-dominating sets and the location-domination number in a graph and its complementStrong product of graphs: Geodetic and hull number and boundary-type sets
http://hdl.handle.net/2117/8413
Strong product of graphs: Geodetic and hull number and boundary-type sets
Cáceres, José; Hernando Martín, María del Carmen; Mora Giné, Mercè; Pelayo Melero, Ignacio Manuel; Puertas González, María Luz
2010-07-27T09:58:31ZCáceres, JoséHernando Martín, María del CarmenMora Giné, MercèPelayo Melero, Ignacio ManuelPuertas González, María Luz4-labelings and grid embeddings of plane quadrangulations
http://hdl.handle.net/2117/3013
4-labelings and grid embeddings of plane quadrangulations
Barrière Figueroa, Eulalia; Huemer, Clemens
We show that each quadrangulation on $n$ vertices has a closed rectangle of influence drawing on the $(n-2) \times (n-2)$ grid.
Further, we present a simple algorithm to obtain a straight-line drawing of a quadrangulation on the
$\Big\lceil\frac{n}{2}\Big\rceil \times \Big\lceil\frac{3n}{4}\Big\rceil$ grid.
This is not optimal but has the advantage over other existing algorithms that it is not needed to add edges to
the quadrangulation to make it $4$-connected.
The algorithm is based on angle labeling and simple face counting in regions analogous to Schnyder's grid embedding for triangulation.
This extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden (2008).
Our approach also yields a representation of a quadrangulation as a pair of rectangulations with a curious property.
2009-06-09T12:59:27ZBarrière Figueroa, EulaliaHuemer, ClemensWe show that each quadrangulation on $n$ vertices has a closed rectangle of influence drawing on the $(n-2) \times (n-2)$ grid.
Further, we present a simple algorithm to obtain a straight-line drawing of a quadrangulation on the
$\Big\lceil\frac{n}{2}\Big\rceil \times \Big\lceil\frac{3n}{4}\Big\rceil$ grid.
This is not optimal but has the advantage over other existing algorithms that it is not needed to add edges to
the quadrangulation to make it $4$-connected.
The algorithm is based on angle labeling and simple face counting in regions analogous to Schnyder's grid embedding for triangulation.
This extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden (2008).
Our approach also yields a representation of a quadrangulation as a pair of rectangulations with a curious property.