DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/9961

Arxiu Descripció MidaFormat
05424005.pdf372,08 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Garde, A. [et al.]. Correntropy-based spectral characterization of respiratory Patterns in patients with chronic heart failure. "IEEE transactions on biomedical engineering", Agost 2010, vol. 57, núm. 8, p. 1964-1972.
Títol: Correntropy-based spectral characterization of respiratory Patterns in patients with chronic heart failure
Autor: Garde Martínez, Ainara Veure Producció científica UPC; Sörnmo, Leif; Jané Campos, Raimon Veure Producció científica UPC; Giraldo Giraldo, Beatriz Veure Producció científica UPC
Data: ago-2010
Tipus de document: Article
Resum: A correntropy-based technique is proposed for the characterization and classification of respiratory flow signals in chronic heart failure (CHF) patients with periodic or nonperiodic breathing (PB or nPB, respectively) and healthy subjects. The correntropy is a recently introduced, generalized correlation measure whose properties lend themselves to the definition of a correntropybased spectral density (CSD). Using this technique, both respiratory and modulation frequencies can be reliably detected at their original positions in the spectrum without prior demodulation of the flow signal. Single-parameter classification of respiratory patterns is investigated for three different parameters extracted from the respiratory and modulation frequency bands of the CSD, and one parameter defined by the correntropy mean. The results show that the ratio between the powers in the modulation and respiratory frequency bands provides the best result when classifying CHF patients with either PBor nPB, yielding an accuracy of 88.9%. The correntropy mean offers excellent performance when classifying CHF patients versus healthy subjects, yielding an accuracy of 95.2% and discriminating nPB patients fromhealthy subjects with an accuracy of 94.4%.
ISSN: 0018-9294
URI: http://hdl.handle.net/2117/9961
DOI: 10.1109/TBME.2010.2044176
Apareix a les col·leccions:SISBIO - Senyals i Sistemes Biomèdics. Articles de revista
Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial. Articles de revista
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius