DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/9379

Arxiu Descripció MidaFormat
romero 2009a.pdfarticle principal687,58 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Romero, S.; Mañanas, M.; Barbanoj, M. Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation. "Annals of biomedical engineering", Gener 2009, vol. 37, núm. 1, p. 176-191.
Títol: Ocular Reduction in EEG Signals Based on Adaptive Filtering, Regression and Blind Source Separation
Autor: Romero Lafuente, Sergio Veure Producció científica UPC; Mañanas Villanueva, Miguel Ángel Veure Producció científica UPC; Barbanoj, Manel J. Veure Producció científica UPC
Data: gen-2009
Tipus de document: Article
Resum: Quantitative electroencephalographic (EEG) analysis is very useful for diagnosing dysfunctional neural states and for evaluating drug effects on the brain, among others. However, the bidirectional contamination between electrooculographic (EOG) and cerebral activities can mislead and induce wrong conclusions from EEG recordings. Different methods for ocular reduction have been developed but only few studies have shown an objective evaluation of their performance. For this purpose, the following approaches were evaluated with simulated data: regression analysis, adaptive filtering, and blind source separation (BSS). In the first two, filtered versions were also taken into account by filtering EOG references in order to reduce the cancellation of cerebral high frequency components in EEG data. Performance of these methods was quantitatively evaluated by level of similarity, agreement and errors in spectral variables both between sources and corrected EEG recordings. Topographic distributions showed that errors were located at anterior sites and especially in frontopolar and lateral–frontal regions. In addition, these errors were higher in theta and especially delta band. In general, filtered versions of time-domain regression and of adaptive filtering with RLS algorithm provided a very effective ocular reduction. However, BSS based on second order statistics showed the highest similarity indexes and the lowest errors in spectral variables.
ISSN: 0090-6964
URI: http://hdl.handle.net/2117/9379
DOI: 10.1007/s10439-008-9589-6
Versió de l'editor: http://www.springerlink.com/content/l664747783w84801/
Apareix a les col·leccions:SISBIO - Senyals i Sistemes Biomèdics. Articles de revista
Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial. Articles de revista
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius