DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/923

Arxiu Descripció MidaFormat
030403hernando.ps192,11 kBPostscriptVeure/Obrir

Títol: On geodetic sets formed by boundary vertices
Autor: Cáceres González, José; Hernando Martín, María del Carmen Veure Producció científica UPC; Mora Giné, Mercè Veure Producció científica UPC; Pelayo Melero, Ignacio Manuel Veure Producció científica UPC; Puertas González, María Luz; Seara Ojea, Carlos Veure Producció científica UPC
Data: 2003
Tipus de document: Article
Resum: Let G be a finite simple connected graph. A vertex v is a boundary vertex of G if there exists a vertex u such that no neighbor of v is further away from u than v. We obtain a number of properties involving different types of boundary vertices: peripheral, contour and eccentric vertices. Before showing that one of the main results in [3] does not hold for one of the cases, we establish a realization theorem that not only corrects the mentioned wrong statement but also improves it. Given S ⊆ V (G), its geodetic closure I[S] is the set of all vertices lying on some shortest path joining two vertices of S. We prove that the boundary vertex set ∂(G) of any graph G is geodetic, that is, I[∂(G)] = V (G). A vertex v belongs to the contour Ct(G) of G if no neighbor of v has an eccentricity greater than v. We present some sufficient conditions to guarantee the geodeticity of either the contour Ct(G) or its geodetic closure I[Ct(G)].
URI: http://hdl.handle.net/2117/923
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius