DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/9126

Arxiu Descripció MidaFormat
Casas_RamirezRos_2010.pdf1,81 MBAdobe PDFThumbnail
Veure/Obrir

Títol: The frequency map for billiards inside ellipsoids
Autor: Ramírez Ros, Rafael Veure Producció científica UPC; Sánchez Casas, José Pablo Veure Producció científica UPC
Data: abr-2010
Tipus de document: External research report
Citació: [prepr201006RamS]
Resum: The billiard motion inside an ellipsoid Q Rn+1 is completely integrable. Its phase space is a symplectic manifold of dimension 2n, which is mostly foliated with Liouville tori of dimension n. The motion on each Liouville torus becomes just a parallel translation with some frequency ! that varies with the torus. Besides, any billiard trajectory inside Q is tangent to n caustics Q 1 ; : : : ;Q n, so the caustic parameters = ( 1; : : : ; n) are integrals of the billiard map. The frequency map 7! ! is a key tool to understand the structure of periodic billiard trajectories. In principle, it is well-defined only for nonsingular values of the caustic parameters. We present four conjectures, fully supported by numerical experiments. The last one gives rise to some lower bounds on the periods. These bounds only depend on the type of the caustics. We describe the geometric meaning, domain, and range of !. The map ! can be continuously extended to singular values of the caustic parameters, although it becomes “exponentially sharp” at some of them. Finally, we study triaxial ellipsoids of R3. We compute numerically the bifurcation curves in the parameter space on which the Liouville tori with a fixed frequency disappear. We determine which ellipsoids have more periodic trajectories. We check that the previous lower bounds on the periods are optimal, by displaying periodic trajectories with periods four, five, and six whose caustics have the right types. We also give some new insights for ellipses of R2.
URI: http://hdl.handle.net/2117/9126
Versió de l'editor: http://www.ma1.upc.es/~casas/trabajos/Casas_RamirezRos_2010.pdf
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Reports de recerca
Departaments de Matemàtica Aplicada. Reports de recerca
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius