DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
Departaments de Matemàtica Aplicada >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/873

Arxiu Descripció MidaFormat
0301fedorov.pdf457 kBAdobe PDFThumbnail
Veure/Obrir

Títol: Nonholonomic LR systems as Generalized Chaplygin systems with an invariant measure and geodesic flows on homogeneous spaces
Autor: Fedorov, Yuri Veure Producció científica UPC; Jovanovic, Bozidar D.
Data: 2003
Tipus de document: Article
Resum: We consider a class of dynamical systems on a compact Lie group G with a left-invariant metric and right-invariant nonholonomic constraints (so called LR systems) and show that, under a generic condition on the constraints, such systems can be regarded as generalized Chaplygin systems on the principle bundle G → Q = G/H, H being a Lie subgroup. In contrast to generic Chaplygin systems, the reductions of our LR systems onto the homogeneous space Q always possess an invariant measure. We study the case G = SO(n), when LR systems are multidimensional generalizations of the Veselova problem of a nonholonomic rigid body motion, which admit a reduction to systems with an invariant measure on the (co)tangent bundle of Stiefel varieties V (k, n) as the corresponding homogeneous spaces. For k = 1 and a special choice of the left-invariant metric on SO(n), we prove that under a change of time, the reduced system becomes an integrable Hamiltonian system describing a geodesic flow on the unit sphere Sn−1. This provides a first example of a nonholonomic system with more than two degrees of freedom for which the celebrated Chaplygin reducibility theorem is applicable. In this case we also explicitly reconstruct the motion on the group SO(n).
URI: http://hdl.handle.net/2117/873
Apareix a les col·leccions:Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius