DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
DCCG - Grup de recerca en geometria computacional, combinatoria i discreta >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/868

Arxiu Descripció MidaFormat
0301hernando.pdf270,78 kBAdobe PDFThumbnail
Veure/Obrir

Títol: On the Steiner, geodetic and hull numbers of graphs
Autor: Hernando Martín, María del Carmen Veure Producció científica UPC; Tao, Jiang; Mora Giné, Mercè Veure Producció científica UPC; Pelayo Melero, Ignacio Manuel Veure Producció científica UPC; Seara Ojea, Carlos Veure Producció científica UPC
Data: 2003
Tipus de document: Article
Resum: Given a graph G and a subset W ? V (G), a Steiner W-tree is a tree of minimum order that contains all of W. Let S(W) denote the set of all vertices in G that lie on some Steiner W-tree; we call S(W) the Steiner interval of W. If S(W) = V (G), then we call W a Steiner set of G. The minimum order of a Steiner set of G is called the Steiner number of G. Given two vertices u, v in G, a shortest u − v path in G is called a u − v geodesic. Let I[u, v] denote the set of all vertices in G lying on some u − v geodesic, and let J[u, v] denote the set of all vertices in G lying on some induced u − v path. Given a set S ? V (G), let I[S] = ?u,v?S I[u, v], and let J[S] = ?u,v?S J[u, v]. We call I[S] the geodetic closure of S and J[S] the monophonic closure of S. If I[S] = V (G), then S is called a geodetic set of G. If J[S] = V (G), then S is called a monophonic set of G. The minimum order of a geodetic set in G is named the geodetic number of G. In this paper, we explore the relationships both between Steiner sets and geodetic sets and between Steiner sets and monophonic sets. We thoroughly study the relationship between the Steiner number and the geodetic number, and address the questions: in a graph G when must every Steiner set also be geodetic and when must every Steiner set also be monophonic. In particular, among others we show that every Steiner set in a connected graph G must also be monophonic, and that every Steiner set in a connected interval graph H must be geodetic.
URI: http://hdl.handle.net/2117/868
Apareix a les col·leccions:DCCG - Grup de recerca en geometria computacional, combinatoria i discreta. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius