DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/864

Arxiu Descripció MidaFormat
9704delsh.pdf591,36 kBAdobe PDFThumbnail
Veure/Obrir

Títol: Exponentially small splitting of separatrices for perturbed integrable standard-like maps
Autor: Delshams Valdés, Amadeu Veure Producció científica UPC; Ramírez Ros, Rafael Veure Producció científica UPC
Data: 1997
Tipus de document: Article
Resum: We consider fast quasiperiodic perturbations with two frequencies $(1/\varepsilon,\gamma/\varepsilon)$ of a pendulum, where $\gamma$ is the golden mean number. The complete system has a two-dimensional invariant torus in a neighbourhood of the saddle point. We study the splitting of the three-dimensional invariant manifolds associated to this torus. Provided that the perturbation amplitude is small enough with respect to $\varepsilon $, and some of its Fourier coefficients (the ones associated to Fibonacci numbers), are separated from zero, it is proved that the invariant manifolds split and that the value of the splitting, which turns out to be exponentially small with respect to $\varepsilon $, is correctly predicted by the Melnikov function.
URI: http://hdl.handle.net/2117/864
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius