DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/846

Arxiu Descripció MidaFormat
0302villanueva.pdf536.63 kBAdobe PDFThumbnail
Veure/Obrir

Títol: Asymptotic size of Herman rings of the complex standard family by quantitative quasiconformal surgery
Autor: Fagella Rabionet, Núria; Martínez-Seara Alonso, M. Teresa Veure Producció científica UPC; Villanueva Castelltort, Jordi Veure Producció científica UPC
Data: 2003
Tipus de document: Article
Resum: In this paper we consider the complexification of the Arnold standard family of circle maps given by $\widetilde F_{\alpha,\ep}(u)=u{\rm e}^{{\rm i}\alpha} {\rm e}^{\frac{\ep}{2}(u-\frac{1}{u})}$, with $\alpha=\alpha(\ep)$ chosen so that $\widetilde F_{\alpha(\ep),\ep}$ restricted to the unit circle has a prefixed rotation number $\theta$ belonging to the set of Brjuno numbers. In this case, it is known that $\widetilde F_{\alpha(\ep),\ep}$ is analytically linearizable if $\ep$ is small enough, and so, it has a Herman ring $\widetilde U_{\ep}$ around the unit circle. Using Yoccoz's estimates, one has that \emph{the size} $\widetilde R_\ep$ of $\widetilde U_{\ep}$ (so that $\widetilde U_{\ep}$ is conformally equivalent to $\{u\in\bc:\mbox{ } 1/\widetilde R_\ep < |u| < \widetilde R_\ep\}$) goes to infinity as $\ep\to 0$, but one may ask for its asymptotic behavior. We prove that $\widetilde R_\ep=\frac{2}{\ep}(R_0+{\cal O}(\ep\log\ep))$, where $R_0$ is the conformal radius of the Siegel disk of the complex semistandard map $G(z)=z{\rm e}^{{\rm i}\omega}{\rm e}^z$, where $\omega= 2\pi\theta$. In the proof we use a very explicit quasiconformal surgery construction to relate $\widetilde F_{\alpha(\ep),\ep}$ and $G$, and hyperbolic geometry to obtain the quantitative result.
URI: http://hdl.handle.net/2117/846
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius