DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/8204

Arxiu Descripció MidaFormat
cyron_smooth_2009.pdf697,82 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Cyron, C.J.; Arroyo, M.; Ortíz, M. Smooth, second order, non-negative meshfree approximants selected by maximum entropy. "International journal for numerical methods in engineering", Maig 2009, vol. 79, núm. 13, p. 1605-1632.
Títol: Smooth, second order, non-negative meshfree approximants selected by maximum entropy
Autor: Cyron, Christian J.; Arroyo Balaguer, Marino Veure Producció científica UPC; Ortiz, Michael Veure Producció científica UPC
Editorial: Wiley and Sons
Data: mai-2009
Tipus de document: Article
Resum: We present a family of approximation schemes, which we refer to as second-order maximum-entropy (max-ent) approximation schemes, that extends the first-order local max-ent approximation schemes to second-order consistency. This method retains the fundamental properties of first-order max-ent schemes, namely the shape functions are smooth, non-negative, and satisfy a weak Kronecker-delta property at the boundary. This last property makes the imposition of essential boundary conditions in the numerical solution of partial differential equations trivial. The evaluation of the shape functions is not explicit, but it is very efficient and robust. To our knowledge, the proposed method is the first higher-order scheme for function approximation from unstructured data in arbitrary dimensions with non-negative shape functions. As a consequence, the approximants exhibit variation diminishing properties, as well as an excellent behavior in structural vibrations problems as compared with the Lagrange finite elements, MLS-based meshfree methods and even B-Spline approximations, as shown through numerical experiments. When compared with usual MLS-based second-order meshfree methods, the shape functions presented here are much easier to integrate in a Galerkin approach, as illustrated by the standard benchmark problems.
Descripció: This is the pre-peer reviewed version of the following article: Cyron, C.J.; Arroyo, M.; Ortíz, M. Smooth, second order, non-negative meshfree approximants selected by maximum entropy. "International journal for numerical methods in engineering", Maig 2009, vol. 79, núm. 13, p. 1605-1632, which has been published in final form at http://www3.interscience.wiley.com/journal/122373763/abstract
ISSN: 0029-5981
URI: http://hdl.handle.net/2117/8204
DOI: 10.1002/nme.2597
Apareix a les col·leccions:LaCàN - Laboratori de Càlcul Numèric. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius