DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/8145

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
huerta_error_2000.pdf11,37 MBAdobe PDF Accés restringit

Citació: Díez, P.; Huerta, A. Error estimation for adaptive computations on shell structures. "Revue européenne des élements finis", Març 2000, vol. 9, núm. 1,2,3, p. 49-66.
Títol: Error estimation for adaptive computations on shell structures
Autor: Díez, Pedro Veure Producció científica UPC; Huerta, Antonio Veure Producció científica UPC
Data: mar-2000
Tipus de document: Article
Resum: The finite element discretization of a shell structure introduces two kinds of errors: the error in the functional approximation and the error in the geometry approximation. The first is associated with the finite dimensional interpolation space and it is present in any finite element computation. The latter is associated with the piecewise polynomial approximation of a curved surface and is much more relevant in shell problems than in any other standard 2D or 3D computation. In the shells framework, formerly the quality control of the finite element solution has been carried out using flux projection a posteriori error estimators. This technique exhibits two main drawbacks: 1) the flux smoothing averages stress components over different elements that may have different physical meaning if the tangent planes are different and 2) the error estimation process uses only the approximate solution and hence, the discretized forces and the computational mesh: the data describing the real geometry and load is therefore not accounted for. In this work, a residual type error estimator introduced for standard 2D finite element analysis is generalized to shell problems. This allows to easily account for the real original geometry of the problem in the error estimation procedure and precludes the necessity of comparing generalized stress components between non coplanar elements. This estimator is based on approximating a reference error associated with a refined reference mesh. In order to build up the residual error equation the computed solution must be represented (projected) on the reference mesh. The use of thin shell finite elements requires a proper formulation in order to preclude shear locking. Following an idea of Donea and Lamain, the interpolation of the rotations is not unique and requires a particular technique to transfer the information from the computational mesh to the reference mesh. This technique is also developed in this work and may be used in any adaptive evolution problem where the solution must be transferred from one mesh to another.
ISSN: 1250-6559
URI: http://hdl.handle.net/2117/8145
Apareix a les col·leccions:LaCàN - Laboratori de Càlcul Numèric. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Altres. Enviament des de DRAC
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius