DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
COMBGRAF - Combinatòria, Teoria de Grafs i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/804

Arxiu Descripció MidaFormat
0002mitjana.pdf284,92 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Cohen, Johanne; Fraigniaud, Pierre; Mitjana Riera, Margarida. “Minimal contention-free matrices with application to multicasting”. A: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1998, vol. 53, núm , p. 17-33.
Títol: Minimal contention-free matrices with application to multicasting
Autor: Cohen, Johanne; Fraigniaud, Pierre; Mitjana Riera, Margarida Veure Producció científica UPC
Data: 2000
Tipus de document: Article
Resum: In this paper, we show that the multicast problem in trees can be expressed in term of arranging rows and columns of boolean matrices. Given a $p \times q$ matrix $M$ with 0-1 entries, the {\em shadow} of $M$ is defined as a boolean vector $x$ of $q$ entries such that $x_i=0$ if and only if there is no 1-entry in the $i$th column of $M$, and $x_i=1$ otherwise. (The shadow $x$ can also be seen as the binary expression of the integer $x=\sum_{i=1}^{q}x_i 2^{q-i}$. Similarly, every row of $M$ can be seen as the binary expression of an integer.) According to this formalism, the key for solving a multicast problem in trees is shown to be the following. Given a $p \times q$ matrix $M$ with 0-1 entries, finding a matrix $M^*$ such that: 1- $M^*$ has at most one 1-entry per column; 2- every row $r$ of $M^*$ (viewed as the binary expression of an integer) is larger than the corresponding row $r$ of $M$, $1 \leq r \leq p$; and 3- the shadow of $M^*$ (viewed as an integer) is minimum. We show that there is an $O(q(p+q))$ algorithm that returns $M^*$ for any $p \times q$ boolean matrix $M$. The application of this result is the following: Given a {\em directed} tree $T$ whose arcs are oriented from the root toward the leaves, and a subset of nodes $D$, there exists a polynomial-time algorithm that computes an optimal multicast protocol from the root to all nodes of $D$ in the all-port line model.
URI: http://hdl.handle.net/2117/804
Apareix a les col·leccions:COMBGRAF - Combinatòria, Teoria de Grafs i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius