DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Arquitectura >
CERCLE - Grup de Recerca: Cercle d'Arquitectura >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/792

Arxiu Descripció MidaFormat
9502ortega.pdf397,58 kBAdobe PDFThumbnail
Veure/Obrir

Títol: Canonical Homotopy Operators for @ in the Ball with Respect to the Bergman Metric
Autor: Andersson, Mats; Ortega Cerdà, Joaquim Veure Producció científica UPC
Data: 1995
Tipus de document: Article
Resum: We notice that some well-known homotopy operators due to Skoda et. al. for the $\bar\partial$-complex in the ball actually give the boundary values of the canonical homotopy operators with respect to certain weighted Bergman metrics. We provide explicit formulas even for the interior values of these operators. The construction is based on a technique of representing a $\bar\partial$-equation as a $\bar\partial_b$-equation on the boundary of the ball in a higher dimension. The kernel corresponding to the operator that is canonical with respect to the Euclidean metric was previously found by Harvey and Polking. Contrary to the Euclidean case, any form which is smooth up to the boundary belongs to the domain of the corresponding operator $\bar\partial^*$, with respect to the metrics we consider. We also discuss the corresponding $\bar\square$-operator and its canonical solution operator. Moreover, our homotopy operators satisfy a certain commutation rule with the Lie derivative with respect to the vector fields $\partial/\partial\zeta_k$, which makes it possible to construct homotopy formulas even for the $\partial\bar\partial$-operator.
URI: http://hdl.handle.net/2117/792
Apareix a les col·leccions:CERCLE - Grup de Recerca: Cercle d'Arquitectura. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius