DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/7405

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
two-manoeuvres.pdf1,82 MBAdobe PDF Accés restringit

Citació: Masdemont, J.J.; Gómez, G.; Alessi, E. M. Two-manoeuvers transfers between LEOs and Lissajous orbits in the Earth-Moon system. "Advances in space research", 2010, vol. 45, p. 1276-1291.
Títol: Two-manoeuvers transfers between LEOs and Lissajous orbits in the Earth-Moon system
Autor: Masdemont Soler, Josep Veure Producció científica UPC; Gómez, Gerard; Alessi, Elisa Maria
Data: 2010
Tipus de document: Article
Resum: The purpose of this work is to compute transfer trajectories from a given Low Earth Orbit (LEO) to a nominal Lissajous quasi-periodic orbit either around the point L1 or the point L2 in the Earth–Moon system. This is achieved by adopting the Circular Restricted Three-Body Problem (CR3BP) as force model and applying the tools of Dynamical Systems Theory. It is known that the CR3BP admits five equilibrium points, also called Lagrangian points, and a first integral of motion, the Jacobi integral. In the neighbourhood of the equilibrium points L1 and L2, there exist periodic and quasi-periodic orbits and hyperbolic invariant manifolds which emanate from them. In this work, we focus on quasi-periodic Lissajous orbits and on the corresponding stable invariant manifolds. The transfers under study are established on two manoeuvres: the first one is required to leave the LEO, the second one to get either into the Lissajous orbit or into its associated stable manifold. We exploit order 25 Lindstedt–Poincare´ series expansions to compute invariant objects, classical manoeuvres and differential correction procedures to build the whole transfer. If part of the trajectory lays on the stable manifold, it turns out that the transfer’s total cost, Dvtot, and time, ttot, depend mainly on: 1. the altitude of the LEO; 2. the geometry of the arrival orbit; 3. the point of insertion into the stable manifold; 4. the angle between the velocity of insertion on the manifold and the velocity on it. As example, for LEOs 360 km high and Lissajous orbits of about 6000 km wide, we obtain Dvtot 2 ½3:68; 4:42 km=s and ttot 2 ½5; 40 days. As further finding, when the amplitude of the target orbit is large enough, there exist points for which it is more convenient to transfer from the LEO directly to the Lissajous orbit, that is, without inserting into its stable invariant manifold.
ISSN: 0273-1177
URI: http://hdl.handle.net/2117/7405
DOI: DOI: 10.1016/j.asr.2009.12.010
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Altres. Enviament des de DRAC

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius