DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/6974

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
CQG2009_TheoryandmodellingofthemagneticfieldmeasurementinLISAPathFinder.pdfArticle de revista científica688,24 kBAdobe PDF Accés restringit

Citació: Diaz-Aguilo, M.; García-Berro, E.; Lobo, A. Theory and modelling of the magnetic field measurement in LISA PathFinder. "Classical and quantum gravity", 12 Gener 2010, vol. 27, p. 1-17.
Títol: Theory and modelling of the magnetic field measurement in LISA PathFinder
Autor: Díaz Aguiló, Marc Veure Producció científica UPC; García-Berro Montilla, Enrique Veure Producció científica UPC; Lobo Gutiérrez, José Alberto Veure Producció científica UPC
Data: 12-gen-2010
Tipus de document: Article
Resum: The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such an interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels do not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing the behaviour of the magnetic field. Despite the relatively large distance between the test masses and the magnetometers, and the insufficient number of data channels, we find that our artificial neural network algorithm is able to reduce the estimation errors of the field and gradient down to levels below 10%, a quite satisfactory result. Learning efficiency can be best improved by making use of data obtained in on-ground measurements prior to mission launch in all relevant satellite locations and in real operation conditions. Reliable information on that appears to be essential for a meaningful assessment of magnetic noise in the LTP.
ISSN: 0264-9381
URI: http://hdl.handle.net/2117/6974
DOI: 10.1088/0264-9381/27/3/035005
Apareix a les col·leccions:GAA - Grup d'Astronomia i Astrofísica. Articles de revista
Departament de Física Aplicada. Articles de revista
Altres. Enviament des de DRAC

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius