DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Enginyeria electrònica i telecomunicacions >
ANTENNALAB - Grup d'Antenes i Sistemes Radio >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/2548

Arxiu Descripció MidaFormat
sensors-08-07715.pdf1,56 MBAdobe PDFThumbnail

Citació: Margarit, G.; Mallorquí, J.J. Assessment of polarimetric SAR interferometry for improving ship classification based on simulated data. Sensors, 2008, vol. 8 p. 7715-7735.
Títol: Assessment of polarimetric SAR interferometry for improving ship classification based on simulated data
Autor: Margarit Martín, Gerard Veure Producció científica UPC; Mallorquí Franquet, Jordi Joan Veure Producció científica UPC
Editorial: MDPI Molecular Diversity Preservation International
Data: jun-2008
Tipus de document: Article
Resum: This paper uses a complete and realistic SAR simulation processing chain, GRECOSAR, to study the potentialities of Polarimetric SAR Interferometry (POLInSAR) in the development of new classification methods for ships. Its high processing efficiency and scenario flexibility have allowed to develop exhaustive scattering studies. The results have revealed, first, vessels’ geometries can be described by specific combinations of Permanent Polarimetric Scatterers (PePS) and, second, each type of vessel could be characterized by a particular spatial and polarimetric distribution of PePS. Such properties have been recently exploited to propose a new Vessel Classification Algorithm (VCA) working with POLInSAR data, which, according to several simulation tests, may provide promising performance in real scenarios. Along the paper, explanation of the main steps summarizing the whole research activity carried out with ships and GRECOSAR are provided as well as examples of the main results and VCA validation tests. Special attention will be devoted to the new improvements achieved, which are related to simulations processing a new and highly realistic sea surface model. The paper will show that, for POLInSAR data with fine resolution, VCA can help to classify ships with notable robustness under diverse and adverse observation conditions.
ISSN: 1424-8220
URI: http://hdl.handle.net/2117/2548
DOI: 10.3390/s8127715
Apareix a les col·leccions:ANTENNALAB - Grup d'Antenes i Sistemes Radio. Articles de revista
RSLAB - Remote Sensing Research Group. Articles de revista
Departament de Teoria del Senyal i Comunicacions. Articles de revista

Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons


Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius