DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/2370

Arxiu Descripció MidaFormat
ACALDE.pdf817,17 kBAdobe PDFThumbnail
Veure/Obrir

Títol: Non-integrability of some few body problems in two degrees of freedom
Autor: Acosta Humánez, Primitivo Belén Veure Producció científica UPC; Álvarez Ramírez, Martha; Delgado Fernández, Joaquín
Data: 16-nov-2008
Tipus de document: Article
Resum: The basic theory of Differential Galois and in particular Morales--Ramis theory is reviewed with focus in analyzing the non--integrability of various problems of few bodies in Celestial Mechanics. The main theoretical tools are: Morales--Ramis theorem, the algebrization me\-thod of Acosta--Bl\'azquez and Kovacic's algorithm. Morales--Ramis states that if Hamiltonian system has an additional meromorphic integral in involution in a neighborhood of a specific solution, then the differential Galois group of the normal variational equations is abelian. The algebrization method permits under general conditions to recast the variational equation in a form suitable for its analysis by means of Kovacic's algorithm. We apply these tools to various examples of few body problems in Celestial Mechanics: (a) the elliptic restricted three body in the plane with collision of the primaries; (b) a general Hamiltonian system of two degrees of freedom with homogeneous potential of degree $-1$; here we perform McGehee's blow up and obtain the normal variational equation in the form of an hypergeometric equation. We recover Yoshida's criterion for non--integrability. Then we contrast two methods to compute the Galois group: the well known, based in the Schwartz--Kimura table, and the lesser based in Kovacic's algorithm. We apply these methodology to three problems: the rectangular four body problem, the anisotropic Kepler problem and two uncoupled Kepler problems in the line; the last two depend on a mass parameter, but while in the anisotropic problem it is integrable for only two values of the parameter, the two uncoupled Kepler problems is completely integrable for all values of the masses.
URI: http://hdl.handle.net/2117/2370
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius