DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/17031

Arxiu Descripció MidaFormat
3183_002711_2012-07-18_P14.pdf935,48 kBAdobe PDFThumbnail
Veure/Obrir

Citació: Sala, E.; Fernandez, S.; Huerta, A. Optimally convergent high-order X-FEM for problems with voids and inclusions. A: European Congress on Computational Methods in Applied Sciences and Engineering. "ECCOMAS 2012: 6th European Congress on Computational Methods in Applied Sciences and Engineering. Programme book of abstracts, September 10-14, 2012, Vienna, Austria". 2012, p. 1-14.
Títol: Optimally convergent high-order X-FEM for problems with voids and inclusions
Autor: Sala Lardies, Esther Veure Producció científica UPC; Fernandez Mendez, Sonia Veure Producció científica UPC; Huerta, Antonio Veure Producció científica UPC
Data: 2012
Tipus de document: Conference report
Resum: Solution of multiphase problems shows discontinuities across the material interfaces, which are usually weak. Using the eXtended Finite Element Method (X-FEM), these problems can be solved even for meshes that do not match the geometry. The basic idea is to enrich the interpolation space by means of a ridge function that is able to reproduce the discontinuity inside the elements. This approach yields excellent results for linear elements, but fails to be optimal if high-order interpolations are used. In this work, we propose a formulation that ensures optimal convergence rates for bimaterial problems. The key idea is to enrich the interpolation using a Heaviside function that allows the solution to represent polynomials on both sides of the interface and, provided the interface is accurately approximated, it yields optimal convergence rates. Although the interpolation is discontinuous, the desired continuity of the solution is imposed modifying the weak form. Moreover, in order to ensure optimal convergence, an accurate description of the interface (which also defines an integration rule for the elements cut by the interface) is needed. Here, we comment on different options that have been successfully used to integrate high-order X-FEM elements, and describe a general algorithm based on approximating the interface by piecewise polynomials of the same degree that the interpolation functions.
ISBN: 978-3-9502481-9-7
URI: http://hdl.handle.net/2117/17031
Versió de l'editor: http://cataleg.upc.edu/record=b1253621~S1*cat
Apareix a les col·leccions:Altres. Enviament des de DRAC
LaCàN - Laboratori de Càlcul Numèric. Ponències/Comunicacions de congressos
Departaments de Matemàtica Aplicada. Ponències/Comunicacions de congressos
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius