DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Altres >
Enviament des de DRAC >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/16872

Ítem no disponible en accés obert per política de l'editorial

Arxiu Descripció MidaFormat
1266-Comparing-error-minimized-extreme-learning-machines-and-support-vector-sequential-feed-forward-neural-networks-1.pdf705,36 kBAdobe PDF Accés restringit

Citació: Romero, E.; Alquezar, R. Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks. "Neural networks", Gener 2012, vol. 25, núm. 1, p. 122-129.
Títol: Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
Autor: Romero Merino, Enrique Veure Producció científica UPC; Alquézar Mancho, René Veure Producció científica UPC
Data: gen-2012
Tipus de document: Article
Resum: Recently, error minimized extreme learning machines (EM-ELMs) have been proposed as a simple and efficient approach to build single-hidden-layer feed-forward networks (SLFNs) sequentially. They add random hidden nodes one by one (or group by group) and update the output weights incrementally to minimize the sum-of-squares error in the training set. Other very similar methods that also construct SLFNs sequentially had been reported earlier with the main difference that their hidden-layer weights are a subset of the data instead of being random. These approaches are referred to as support vector sequential feed-forward neural networks (SV-SFNNs), and they are a particular case of the sequential approximation with optimal coefficients and interacting frequencies (SAOCIF) method. In this paper, it is firstly shown that EM-ELMs can also be cast as a particular case of SAOCIF. In particular, EM-ELMs can easily be extended to test some number of random candidates at each step and select the best of them, as SAOCIF does. Moreover, it is demonstrated that the cost of the computation of the optimal outputlayer weights in the originally proposed EM-ELMs can be improved if it is replaced by the one included in SAOCIF. Secondly, we present the results of an experimental study on 10 benchmark classification and 10 benchmark regression data sets, comparing EM-ELMs and SV-SFNNs, that was carried out under the same conditions for the two models. Although both models have the same (efficient) computational cost, a statistically significant improvement in generalization performance of SV-SFNNs vs. EM-ELMs was found in 12 out of the 20 benchmark problems.
ISSN: 0893-6080
URI: http://hdl.handle.net/2117/16872
DOI: DOI: 10.1016/j.neunet.2011.08.005
Versió de l'editor: http://www.ncbi.nlm.nih.gov/pubmed/21959130
Apareix a les col·leccions:Altres. Enviament des de DRAC
SOCO - Soft Computing. Articles de revista
Departament de Llenguatges i Sistemes Informàtics. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets.

Per a qualsevol ús que se'n vulgui fer no previst a la llei, dirigiu-vos a: sepi.bupc@upc.edu

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius